Optimum Inter-Echo Spacing for the GESFIDE Pulse Sequence in the Simultaneous Measurement of R2 and R2'

R. Song¹, H. Song¹

¹Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States

Introduction

The measurement of the reversible and irreversible transverse relaxation rates, $R_2' (=1/T_2')$ and $R_2 (=1/T_2)$, respectively, plays a vital role in various areas of research, including studies that involve brain iron, integrity of trabecular bone, and iron-overloading diseases. Both relaxation parameters are often desired, and two parameters could be measured simultaneously with the GESFIDE (<u>G</u>radient-<u>E</u>cho <u>S</u>ampling of <u>Free</u> Induction <u>D</u>ecay and <u>E</u>cho) pulse sequence [1]. Although optimizing the imaging parameters for a single exponential decay has been widely investigated [2,3], there is no report of such optimization in sequences such as GESFIDE in which two exponential decays are simultaneously measured to obtain both R_2 and R_2' . In this work, the measurement errors in R_2 and R_2' as a function of several imaging parameters, including the inter-echo spacing, are systemically studied, and a means to optimize the parameters is presented.

Methods

The GESFIDE pulse sequence is illustrated in **Fig. 1**. Following the 90° excitation pulse, a train of gradient echoes is acquired, which decays exponentially with the rate constant R_2^* (=1/T₂^{*}). The error in the computed R_2^* could be expressed as [2]

where τ is the inter-echo spacing, n is echo number, SNR₀ is the SNR of the first echo, and $w_n = exp(-2n\pi R_2^*)$. Following the 180° refocusing pulse, a second train of gradient echoes is acquired, which evolve exponentially with R₂⁻. The error in R₂⁻, σ_{R2} , could also be represented by Eq.[1] simply by replacing R₂^{*} with R₂⁻ and SNR₀ with that of the first image of the second echo train:

$$SNR_0' = SNR_0 \exp[-(N-1)\tau R_2^* - \frac{1}{2}T_p(R_2^* + R_2^-)]$$
 [2]

in which T_p (= 10 ms used in this work) is the separation between the last echo of the first echo train and the first echo of the second. Because $R_2 = (R_2^* + R_2)/2$ and $R_2' = (R_2^* - R_2)/2$, the error for both is expressed

as $\sigma_{R2} = \frac{1}{2} \sqrt{\sigma_{R2^*}^2 + \sigma_{R2^-}^2}$, and σ_{R2} could be minimized either numerically or by solving $\partial \sigma_{R2} / \partial \tau = 0$.

 $\sigma_{R2^*} = SNR_0^{-1} \sqrt{\sum w_n / (\sum w_n \sum w_n n^2 \tau^2 - [\sum w_n n \tau]^2)}$

Results and discussion

Fig. 1. GESFIDE pulse sequence

If only a single decay R_2^* is considered, by setting $\partial \sigma_{R^{2*}}/\partial \tau = 0$ one can show that the ratio τ_0/T_2^* is a constant for a given number of echoes N in the echo train, where τ_0 is the optimum inter echo spacing. **Fig. 2** shows the relationship between γ [= $(N-1)\tau/T_2^*$], which is the total data acquisition time relative to T_2^* , and the number of acquired echoes. The plot also implies that for a given number of echoes, the optimum echo spacing is a function of T_2^* but is independent of the image SNR. Although SNR will affect the error in the measurement of R_2^* according to Eq. [1], the optimum echo spacing is not affected by the noise levels. According to the plot, a good rule of thumb for the total data collection time is twice the relaxation period T_2^* .

Fig. 3 plots the results for the GESFIDE sequence showing the relationship between the optimum inter-echo spacing and R_2 for several values of R_2^* for N=5. The plot indicates that for a fixed R_2^* , the optimum echo spacing τ_0 is a function of R_2 , with higher R_2 requiring shorter τ_0 . A plot of γ vs. R_2 is presented in Fig. 4, showing that in GESFIDE, the optimum data acquisition period for each echo train ranges approximately from $0.7T_2^*$ to $2T_2^*$. These findings make intuitive sense since reduced length of the first echo train would preserve more signal for the second. Similar plots using larger N result in nearly identical results as shown in Fig. 4, although for smaller N, γ decreases slightly similar to that observed in Fig. 2.

While the optimum data acquisition time for the measurement of a simple R_2^* decay is $2T_2^*$, that of the GESFIDE sequence is dependent on R_2 and R_2' and ranges from $0.7T_2^*$ to $2T_2^*$.

Fig. 2 The ratio of the total data acquisition time to T_2 [$\gamma = (N-1)*\tau/T_2*$] as a function of number of echoes acquired for a single exponential decay.

Fig. 3 Optimum inter-echo spacing vs. R_2 for various values of R_2^* . Some of the curves are cut off since $R_2 \leq R_2^*$. N=5.

Fig. 4 γ vs. R₂ for a given values of R₂^{*}. The plots are nearly the same for different values of N.

Acknowledgement: R01 DK-066129

References [1] Ma J, Wehrli FW, J. Magn. Reson. **B111**:61-69 (1996). [2] Hardy PA, Yue G, J. App. Physiol. **83**:904-909(1997) [3] Majumdar S, *et. al.* J. Magn. Reson. **3**, 397-417 & 562-574(1986)