Accurate, B₁-Insensitive Fast T₁-Measurements at 3T

K. Sidaros¹, I. K. Andersen^{1,2}, L. G. Hanson¹

¹Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark, ²Institute of Clinical Neuro Science, Göteborg

University, Gothenburg, Sweden

Introduction

Fast T_1 -measurements can be acquired in a few seconds using the Look-Locker principle in conjunction with echo-planar imaging. [1,2] Accurate calculation of T_l , however, requires knowledge of the true mean flip angle through a slice [3], which varies throughout the imaged volume due to B_1 -inhomogeneities. The flip angle cannot be estimated by fitting the signal model to measured data since it is strongly correlated to other parameters in the model. However, by repeating the T_l -measurement with multiple flip angles, it is possible to estimate the flip angle along with T_1 , M_0 and the degree of inversion, β . This allows accurate and fast measurement of T_1 in the presence of B_1 -inhomogeneities.

Methods

Look-Locker T_l -measurements were acquired in a single slice in both a homogenous gel phantom and a human subject. All measurements were done on a Siemens Magnetom Trio 3T-scanner. GE-EPI was used for imaging and a non-selective hyperbolic secant adiabatic inversion pulse was used for inversion with TI=50ms. The measurements were repeated with two flip angles. For the phantom measurements, flip angles, α of 10° and 15° were used and the time between slices, δTI , was 75ms. For the in-vivo measurements α was 15° and 25° and δTI was 200ms.

A four-parameter model with the unknowns T_1 , M_0 , α and β was fit to the data acquired with both flip angles. It was assumed that the ratio between the actual flip angles in the two measurements was constant regardless of the B_1 inhomogeneities.

Figure 1: The ratio between the actual and the nominal flip angles in a phantom (left) and in-vivo (right).

Figure 2: Histograms of the fitted T_1 values in a phantom with the single-flip-angle LL method (left and middle) and with the proposed 2-flip-angle method (right).

Results

Figure 1 shows the fitted ratio between the actual and nominal flip angles in both the phantom and in-vivo measurements. The ratio shows good agreement with a typical B_I -map. Figure 2 shows histograms of the fitted T_I values in the homogenous phantom with the normal single-flip-angle Look-Locker method (for $\alpha = 10^{\circ}$ and 15°) as well as with the proposed 2-flip-angle method. The proposed method clearly has a narrower histogram indicating more robust T_l estimation. Figures 3&4 show the corresponding T_l -maps and histograms for the in-vivo measurements where it can be seen that the histogram with the 2-flip-angle method is narrower than with the single-flip-angle method. The accuracy of the fitted T_1 -maps could potentially be further improved by constraining the B_1 -maps to be smooth, e.g. by using a masked polynomial fit to smooth the fitted flip-angles.

Conclusions

It was shown that B_{l} -insensitive fast T_{l} -measurements can be acquired using the Look-Locker method by using two flip angles and fitting an appropriate model to the measured data. This improves the accuracy of T_l -measurements at especially high field where B_1 -inhomogeneities are pronounced.

References

[1] Look, DC and Locker, DR. Rev Sci Instrum 1970;41:250-1. [2] Gowland, P and Mansfield, P. Magn Reson Med 1993;30:351-354. [3] Sidaros, K et al. Proc. 8th ISMRM 2000;p.429

Figure 3: T₁-maps [s] obtained with the single-flip-angle LL method (left and middle) and with the proposed 2-flip-angle method (right).

maps in figure 3.