Evaluation and Reduction of Variability in Quantitative R2* Measurement of the Human Brain

X. Sun¹, J. Wang¹, M. D. Meadowcroft¹, Q. X. Yang¹, M. B. Smith¹

¹Center for NMR Research, Dept. of Radiology, Pennsylvania State College of Medicine, Hershey, PA, United States

Introduction

The R_2^* parametric mapping has been utilized for quantification of tissue iron *in vivo* [1-2]. However, a large degree of variability in measuring of R_2^* limits its clinical utilization [1-2]. It is important to systematically examine the influence of the basic data acquisition parameters on quantitative R_2^* measurement so that a standardized protocol can be established. This study is designed to address the experimental issues of R_2^* quantification using a well-controlled phantom and validate those results with R_2^* mapping of human brains.

Methods

 R_2 * Phantom

The phantom consists of a series of test tubes containing media with T₂ and T₁ relaxation characteristics similar to human brain tissues at 22 °C in 3.0 T (Fig. 1). Each tube contains a mixture of agar and gadolinium at the appropriate concentrations. The R₂* of the phantom is controlled by titration of Fe concentration using FeCl₃ ranging from 0 to 240 μ g/g wet weight to encompass tissue iron concentrations in the human brain.

MRI protocol

A series of T_2^* images were obtained with the phantom using a multi-echo GESEPI sequence [3] on a Bruker MedSpec S300 3.0 T system and a birdcage coil for RF transmission and reception. The R_2^* maps were obtained using 12 echo images acquired with echo spacing = 4.23 ms, TR / TE / FA = 322 ms / 8 ms / 50°, bandwidth = 100 kHz, FOV = $25 \times 25 \times 0.8$ cm³, matrix = $256 \times 192 \times 16$ and two 8-mm-thick axial slabs. For human studies, 2 healthy subjects (34 and 64 years old) received a similar R_2^* mapping protocol.

Data processing and analysis

A series of R_2^* maps were generated using a variable number of echo images (from the first 4 to 12 echo images) using the same set of multiple gradient-echo images and linear regression. R_2^* values and its variability from each test tube in the phantom were measured with the mean and standard deviation (SD) from a circular ROI (Fig. 1). In order to quantify the relative differences of R_2^* measurement with respect to sampling length (number of echo images), Effect Size (ES) [4] of R_2^* with a given sample of the free induction decay (FID) is defined as:

$$ES = (R_2 *_{n_echoes} - R_2 *_{12_echoes}) / SD_{R_2 *_{12_echoes}}$$

where *n* is the number of echo images used for calculation of a R_2^* map. Here the R_2^* map calculated with 12 echo images is used as a relative standard. This is true for the phantom sample study because the sample is uniform and SNR is sufficiently high for all the echo images. In this case, SD_{R2^*12} echo represents the minimal variability of a set of measurements of R_2^* (all the pixels in the given ROI) in a uniform sample. ES as defined can, thus, be used as a statistic quantity for evaluation of measurement methods.

Results

Figure 2 shows the Effect Sizes of R_2^* obtained with 4 - 12 echo images from the phantom. There is an apparent trend of decreasing in ES with increasing number of echo images used for R_2^* calculation. With eight or more echo images used, the ES was smaller than 0.5 for all the iron concentrations ranging from 0 to 240 µg/g wet weight. This indicates that a sampling length of R_2^* curve less than 37 ms with 8 echo images will lead to significant inaccuracy. Figure 3 shows ES of R_2^* of six brain structures from the 34 years old subject, which presents similar characteristics to the phantom data.

Discussion

 R_2^* is traditionally estimated with only two gradient-echo images acquired at different TE. As demonstrated in this study, a large variability is expected with this approach. To reliably measure R_2^* , the FID should be sampled equal to or longer than one T_2^* period with adequate sampling points (number of echoes).

 R_2^* conveys rich information about tissue physiological state (oxygenation, calcification, and iron content, etc.). However, R_2^* mapping is underutilized clinically due to its large variability and the influence of magnetic field inhomogeneity artifact. This study systematically evaluated and traced the sources of the variability in R_2^* measurement. The data presented are essential for establishing a standardized protocol for clinical quantitative analysis with R_2^* mapping.

Reference

- 1. Ordidge RJ, et al. Magn Reson Med 1994; 32: 335-341.
- 2. Gelman N, et al. Radiology 1999; 210: 759-767.
- 3. Yang QX, et al. Magn Reson Med 1998; 39: 402-409.
- Cohen, J. Statistical power analysis for the behavioral sciences (2nd edition). Hillsdale, NJ: Lawrence Earlbaum Associates, 1988.

Acknowledgement: NIH (RO1 EB00454).

Figure 1. The R_2^* map of the phantom. The red circles are the regions of interest used for calculation.

Figure 2. The Effect Sizes of 4 to 11 echoes compared to 12 echoes mGESEPI R_2^* measurement on the phantom.

Figure 3. The Effect Sizes of 4 to 11 echoes compared to 12 echoes mGESEPI R_2^* measurement on a 34 years old man. Caudate nucleus: CC, globus pallidus:GP, putamen: Pu, red nucleus, RN, substantia nigra: SN, frontal white matter: WM_F.