BOLD MRI evaluation of vessel reactivity to CO₂ and O₂ enrichment: implementation in brain tumor patients

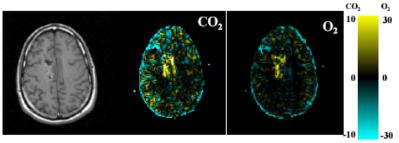
²Abramovitch .R ,¹Pianka .P ,²Edrei .Y ,¹Ben Bashat .D

for Gene Therapy, .Goldyne Savad Inst²Aviv Sourasky Medical Center, Tel Aviv, Israel, -Wohl Institute for Advanced Imaging, Tel¹

Hadassah Hebrew University Medical Center, Jerusalem, Israel

Background/ Aims:

The switch of tumors from avascular to the vascular phase marks a critical checkpoint in tumor progression. Clinical studies have demonstrated that the degree of angiogenesis is correlated with the malignant potential of several human cancers¹. Previously we developed a method for *in-vivo* mapping of tumor vessel functionality and maturation by MRI². Vascular maturation, a process which can render the vessels resistant to anti-angiogenic therapy is detected by enhanced relaxation due to changes in blood flow in response to hypercapnia (5% CO₂), while vascular functionality is detected by the change of T_2^* in response to hyperoxia (95% O₂) as described². Our earlier studies prove the feasibility of this method to detect anti-angiogenic effects in laboratory animal tumor models^{2,3}. In the present study we demonstrate preliminary results of applying this method in brain tumor patients.


Methods:

MRI was performed on 3T VH/i and 1.5T echo-speed GE system (Milwaukee, WI, USA). Nine control subjects and one patient with recurrent oligodendroglioma grade 3 were scanned. MRI protocol included T_1 and T_2 weighted images, and functional mapping (GE-EPI) in a block design paradigm while inhaling either air-5% CO₂, or oxygen-5% CO₂ with air as a blank (Figure 1D, E respectively). Data analysis was done using home written IDL software (Research Systems Inc.).

Results and Discussion:

In healthy subjects we observed differences in the MRI response of gray and white matter to oxygen and CO_2 , as expected from their different vessel density (Figure 1B, C). We have optimized the protocol by separating the paradigm into two separate experiments of CO_2 and oxygen, since the response to CO_2 was reduced after breathing O_2 . We have also optimized parameters, such as number of repeats during each gas saturation (1.5min for CO_2 and 1min for O_2) and air interval (1.5-2 min alternatily), which depend on the physiological response to the gases. Representative results from a 27 years old volunteer are shown in Figure 1.

Using the chosen optimal paradigm and parameters we applied this method to a 33 year old patient with recurrent brain oligodendroglioma. Vessel reactivity was elevated in the tumor area compared to healthy tissue in the same patient. Results from CO_2 and O_2 reactivity clearly highlighted the tumor from normal brain tissue (Fig 2). This tumor was not enhanced with Gd. This can explain the reactivity to CO_2 in this tumor.

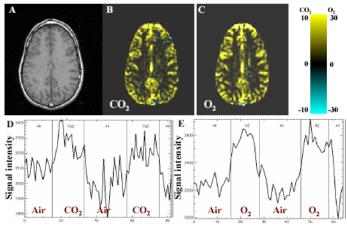


Figure 1: T_1 SE slice from a 27 years old volunteer obtained by 1.5T MRI. CO₂ reactivity (B) and O₂ (C) maps are given as % change of signal intensity (scale bar). Representative BOLD signal response to CO₂ (D) and O₂ (E) paradigm.

Figure 2: Representative T_1 SE slice from a 33 years old patient with recurrent oligodendroglioma obtained by 1.5T MRI. CO₂ reactivity and O₂ maps are given as % change of signal intensity (scale bar).

In conclusion, we have shown preliminary results of the application of a breathing paradigm method for a patient with brain tumor. This method clearly highlighted the tumor from normal brain tissue and might add additional information regarding classification, grading of brain tumors and optimizing treatment.

References

3. Abramovitch R, Itzik A, Harel H, Nagler A, Vlodavsky I and Siegal T, Neoplasia 6(5):480-489, 2004.

^{1.} Szabo S, Sandor Z. Eur J Surg Suppl. 582:99-103, 1998.

^{2.} Abramovitch R., Dafni H., Smouha E., Benjamin L., and Neeman M. Cancer Research 59: 5012-6, 1999.