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Introduction  
Point matching between two shapes is a common problem in medical image processing techniques such as registration. The purpose of this work is to present and 
validate a 3D automatic point matching technique applied to medical imaging. The technique utilizes 3D descriptors called shape-contexts that characterize the shape of 
each point based on the distribution of points around them [1]. Corresponding points on similar shapes will have similar shape-contexts. In comparison to other point 
matching techniques, the technique presented in this work does not require equal number of points for the shapes to be compared or segments with high curvature.  
Shape-contexts are invariant to translation, and they can be also invariant to scaling and rotation. The validation was performed for intra and inter-subject shape 
matching based on landmark tracking on segmented MR images of tibias. Rigid body registration of the corresponding images based on the point matching is also 
demonstrated.                                                                      Methods 
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Fig. 1.  (a) 3D shape-context. (b) Cross-section of a 
3D shape-context. (c) Intra-subject point matching. 
Target shape (green); target shape after rotation (10º 
x, 10º y, 20º z), scaling (0.9), and translation (-9 x, 14 
y, -23 z; magenta); target shape after initial rough 
alignment (red); some point correspondences (blue 
arrows). (d)  Point correspondences and registration 
results of (c). 

Seven tibias were manually segmented from sagittal MR images of the knee of parallel kinematics and 
osteoarthritis on-going projects at our institution. The segmentation was performed based on Bezier splines 
and the control points were saved and used to represent the bone shapes (~682 points per tibia). For each point 
in all shapes we computed a histogram representing the point distribution of the relative remaining points. The 
bins were uniform in a 3D log-polar space (r, θ [0, 2π) and φ[0, π]) to make the descriptors more sensitive to 
nearby points than to those far away. An example of a bin in a 3D shape-context is shown in red in Fig. 1a 
together with an image representation of the corresponding shape-context with a total of 1183 bins (r = 7, θ = 
13, φ = 13). Fig. 1b shows a cross-section of the structure of a 3D shape-context in blue. All shape-contexts 
were scale invariant by normalizing the radial distances by the mean distance of all the pair-wise distances in 
the shape [1]. In order to match two shapes, their corresponding shape-contexts were compared to each other 
based on the χ2 test statistic (1), a simple and effective measure of histogram similarity. The output of this 
statistic could be considered as the cost of matching the points of the shape-contexts under evaluation. Once 
all the pair-wise costs were computed, the optimal point matching was solved using the Hungarian method [2], 
which minimizes the total cost of this assignment and satisfies the criterion of 1-to-1 matching. 
For intra-subject validation all tibias were matched to themselves. The initial matching was direct and then 
followed by perturbations of scale, orientation, and location of the shapes to be matched. The perturbations in 
orientation were either rotations in the three axes, or a rotation simulating knee flexion (z-axis, Fig. 1c). The 
latter situation is most common at our institution since all scans are performed with a knee holder to prevent 
motion. Since shape-contexts are not rotational invariant when computed using an absolute frame, further 
processing had to be completed. The solution suggested in [1] to satisfy this criterion in 2D was to find the 
tangent vector at each point and use it as the positive x-axis to compute the shape-contexts. Our approach was 
to find the mid-slices of the segmented images and compute rotational invariant shape-contexts to perform 2D 
point matching followed by the computation of a rotation matrix to align these 2D slices in 3D. The rotation 
matrix was calculated using the closed form solution presented in [3] and applied to the whole shape to have 
an initial rough alignment of the two shapes before 3D shape-context computation (Fig. 1c). The main 
assumptions here were that both shapes were similar at their mid-slices (common for tibias), and that the 
shape-contexts were insensitive to small perturbations [1]. Then rigid body registration using the point 
matching to compute the scaling, rotation, and translation factors as suggested in [3] was accomplished for 
qualitative validation. Quantitative validation was performed based on landmark tracking. 
For inter-subject validation all subjects were matched to the same target and all matching was direct with no 
perturbations in scale or orientation. However, an initial rough alignment was also applied following the 
procedure described above. Since no a-priori knowledge was available about the exact matching of shapes 
coming from different subjects, the only way to validate the results was based on visual tracking of landmarks 
and visual assessment of rigid body registration results. 
Results  
When either no perturbations were applied, or only scaling, translation, and rotation simulating knee flexion 
were applied for intra subject validation, then the point matching was perfect. When rotations in the remaining 
axes were applied the performance was still robust as it can be seen in Fig. 1d, which is a scatter plot of the 
point matching results. The blue line in Fig. 1d represents perfect matching, and the red points represent 
deviations from it. However, after a second iteration with no initial alignment based on the mid-slices, the 
point-matching either was perfect or misclassified 2 points at most. All points were correctly classified after a 
3rd iteration. These additional iterations were much faster than the 1st assignment.  
Visual assessment of landmark tracking and rigid body registration results also showed good performance for 
the inter-subject matching, and further validation is in progress based on work similar to that proposed in [4]. 
Discussion and conclusions 
In this work we have presented and validated a 3D point matching technique that allows automatic landmark 
identification and matching on segmented images. The point matching technique presented in this work is 
invariant to translation, and can be invariant to scale and rotation. We have also shown for medical imaging 
applications an alternative way to make the descriptors less sensitive to rotations. This alternative is useful 
when clean 3D normals cannot be computed, and only requires an initial rough alignment taking the mid-
slices as references for the 3D shape orientations, followed by additional iterations of point matching and 
registration. Quantitative and qualitative results demonstrated the excellent performance and robustness of the 
technique.  
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