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Introduction:  Endorectal coils are often used in prostate MRI. The small FOV offered by an endorectal coil provides high resolution and 
SNR. Inflatable coils, such as the Medrad MRInnervu, offer a well-tolerated, disposable, and high SNR method for endorectal imaging; 
however, the inflated coils can result in 10 ppm susceptibility artifacts at the air-tissue interface [1]. This presents a serious challenge for 
applications such as thermal ablation and spectroscopy that require 0.1-1.0 ppm homogeneity [2, 3].  Here we investigated whether an 
inflatable coil filled with manganese chloride solution could provide a susceptibility-matched, low-noise solution for endorectal imaging.   

Methods:  To minimize noise power contribution from the paramagnetic ion solution, a low-conductivity solution was desired. It was 
determined that Mn2+ offered the shortest T2 relaxation time at the lowest conductivity as compared to other paramagnetic ions such as Gd3+, 
Cr3+,  Ni2+, and Cu2+ [4].  In order to achieve rapid T2 decay, solutions of MnCl2·4H2O with concentrations between 2-9 mM were prepared.  
The DC conductivity of the solution was measured (Scientific Products, Evanston, IL). From the conductivity values, a relative noise power 
contribution of the MnCl2 solution was calculated and compared to the expected noise power contribution from the body [5].  To verify the 
noise calculation, a Medrad MRInnervu endorectal coil was modified 
for unloaded and loaded Q measurements (HP 3589A Network 
Analyzer). A test setup consisting of 3.5mL vials of water, three 
concentrations of MnCl2, and air was submerged in a water bath 
perpendicular to the main field in a GE 1.5T Signa scanner. An off-
resonance frequency map was derived from the phase difference of 
two gradient recalled echo images (TE1=15ms, TE2=18ms).  

Results: Table 1 summarizes the conductivity measurements and 
relaxation times determined for three concentrations of MnCl2. For 
three samples of 9 mM MnCl2, the mean conductivity was measured 
to be 0.15 S/m, less than a third of the conductivity of human tissue. 
Thus, it is expected that body and coil noise will dominate, and SNR 
should be degraded by less than 15% with the addition of MnCl2 to 
the coil. Table 2 presents the Q measurements for the inflatable coil 
filled with air and with MnCl2, both loaded and unloaded.  When the 
MnCl2-filled coil is loaded with a saline solution, the change in Q 
from the air-filled case is negligible.  Figure 1 depicts the 
susceptibility artifact resulting from the air-filled vial in comparison to 
the MnCl2 and water-filled vials.  

Discussion:  The off-resonant frequency map demonstrates that a vial 
filled with MnCl2 solution will not cause a susceptibility artifact. In 
addition, the Q measurements indicate that the addition of MnCl2 to an 
inflatable endorectal coil will not significantly degrade the SNR. The 
health hazard associated with using a MnCl2-filled coil in vivo has not        
yet been fully examined. The required amount of 8.5mM MnCl2 
solution to fill a 60cc inflatable endorectal coil is 0.007% of the LD50, 
1484mg/kg [6]. Thus, it is expected that the MnCl2 would be safe for 
use in humans.   

Conclusion:  An inflatable coil filled with manganese chloride 
solution provides a low-noise method for effectively eliminating 
susceptibility artifacts during endorectal imaging. This approach is 
promising for demanding applications such as thermometry and                                 
spectroscopy, where achieving 0.1 ppm homogeneity can be critical.   
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Table 1.  Mean   DC  conductivities   and  T2   relaxation  times  for  three 
concentrations of MnCl2.   
 

Manganese Chloride 
Concentration (mM) 

Mean DC 
Conductivity (S/m) 

T2 Relaxation 
Time (ms) 

9 0.15 1 

4 0.07 3 
2 0.04 5 

Table 2.  Q measurements for a Medrad MRInnervu coil filled with  60mL 
air vs. 60mL MnCl2. The loading condition was a 900mL bath of saline 
doped to the conductivity of blood at 64 MHz [7]. 

Coil Condition Unloaded Q Loaded Q 

Air-filled 61.8 28.0 

MnCl2-filled 50.9 28.1 
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Figure 1. Magnitude of the off-resonance 
frequency. The air-water interface results in a 
characteristic dipole pattern outside the air vial. 
No dipole pattern exists outside of the three 
solutions. A lack of signal, such as from the 
plastic, manifests as phase noise. The doped 
solutions would be ideal for filling the inflatable 
coil because no artifact results.  
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