
Feasibility of quadrature body coil in prostate spectroscopic MR Imaging

M. C. Martinez-Bisbal¹, B. Celda^{1,2}, B. Martinez-Granados¹, C. San Juan³, L. Marti-Bonmati⁴

Purpose: PSA measurements, transrectal ultrasonography, CT, and MRI often cannot reliably differentiate early prostate cancer from BPH and normal tissue. Proton spectroscopic imaging (¹H-MRSI) can evaluate the prostate with an appropriate matrix size and field homogenisation. In most centres spectroscopic images are obtained with an endorectal coil. We present our results with ¹H-MRSI obtained using the quadrature body coil, ensuring faster and reliable clinical application and lower patient disturbances.

Subjects and Methods: 25 male patients were studied (1.5 T system) with a sagittal and transverse T2W images orthogonal to the prostate central gland axis. Transverse images were used to localize 2 ¹H-MRSI slices (TE 272 ms, thickness 20x22 mm, ROI 65x65 mm) including both the central and peripheral glands (Figure 1). When necessary, a single volume (TE 136 ms) was also acquired in peripheral regions or regions with abnormal ¹H-MRSI findings (Figure 2). Spectra were analysed with jMRUI and SIView (Figure 3 and 4). For each single volume spectra the ratio (Cho+Cr)/Cit was calculated and compared with the ratios in the references with (Cho+Cr)/Cit < 0.75 for normal tissue, 0.75 < (Cho+Cr)/Cit < 0.86 for possible cancer and (Cho+Cr)/Cit > 0.86 for tumour (Table 1). Only subjects with pathological data (surgery or biopsy) were included.

Fiaure

Results: Higher Cho (Choline) and lower Cit (Citrate) were found in those patients with cancer in all pathological areas (Table 1). ¹H-MRSI (Figure 4) allowed the location of higher cellular regions in the central and peripheral portions. The spatial resolution was considered adequate by radiologists and urologic surgeons.

Table	e 1			SV (Cho	+Cr)/C	it	MV 2SL			
n	Age	PSA	PPG R	PPG L	$\mathbf{C}\mathbf{G}$	Lesion ·	SL 1	SL 2	AP	
1	77	17.3	0.30	0.43	-	-	R Cho ↑ Cit ↓	Cho ↑ Cit ↓	Not tumour	
2	74	5.9	0.13	Art.	-	_	NA	R P Cho 11 Cit -	No prostate tumour Vesical Tumour	
3	66	8.2	0.32	0.22	-	-	Cho≅Cit↓	Cho≅Cit↓	Not tumour	
4	73	23.5	_	-	-	1.15	R Cho≅Cit↓	Cho≅Cit↓	Not tumour	
5	63	5	-	-	Art.	-	Cho ↑ Cit ↓	Art.	Not tumour	
6	72	7.5	-	-	0.53	-	NA	NA	Not tumour	
7	56	-	-	-	-	0.79	L Cit ↓	P Cho↑Cit↓	Not tumour	
10	64	8.9	0.41	0.23	-	-	NA	P Cho↑↑ Cit↓	Adenocarcinoma G-2+2	Cit 671
11	71	-	0.38	0.24	-	_	A C Cit↓	R P Cho↑↑ Cit ↓	Adenocarcinoma G-2+2	500 Cho Cr / 500
12	60	15.5	-	-	-	2.44	R Cho 🕇	A Cho 🕇	Adenocarcinoma G-2+3	167 167 167 167 1
13	65	10.8	1.10	0.45	-	-	Cho↑Cit↓	Cho ↑ Cit ↓	Adenocarcinoma G-3+3	43 39 35 31 28 22 18 43 1006 1 1006
14	71	6	0.30	Art.	-	-	Art.	Art.	Adenocarcinoma G-3+3	839 839 871 671 671 671 671 671 671 671 671 671 6
15	63	9.1	Art.	Art.	-	-	Cho ↑ Cit ↓	P Cho ೆ Cit -	Adenocarcinoma G 3+3	325 167 MM 335 167 M
16	65	-	0.92	1.16	-	-	Cho ↑ Cit ↓	Art.	Adenocarcinoma G-3+3	6 43 39 35 31 25 22 18 43
17	65	11.4	-	-	0.75	1.96	R Cho ↑ Cit ↓	P Cho↑Cit↓	Adenocarcinoma G 3+4	1006 839 671 671
18	71	64.0	-	-	-	0.95	L Cho ↑ Cit↓	Art.	Adenocarcinoma G-4+3	503 4 503 4 335 4 Am A 335
19	59	-	-	-	Art.	-	Art.	Art.	Adenocarcinoma B-Dif	0 43 39 35 31 28 22 18 43

Conclusion: In general, clear modifications in the Cho and Cit MRS signals can be observed in the tumour prostate patients. The combined information of both, single volume and MRSI spectra, allows the identification of tumoral tissue. ¹H-MRSI and single voxel MRS with a 1.5 T unit using the quadrature body coil is an easily accepted technique useful in the diagnosis of prostate cancer. Patient conformance is high; it is non-invasive; and allows patient follow up.

Acknowledgements:

Philips Ibérica, S.A. División Sistemas Médicos IM3, Bruker Española S.A., Bruker Biospin and SAF 2004-06297

¹Physical-Chemistry, University of Valencia, Burjassot, Valencia, Spain, ²SCSIE, University of Valencia, Burjassot, Valencia, Spain, ³Urology, Hospital Doctor Peset, Valencia, Spain