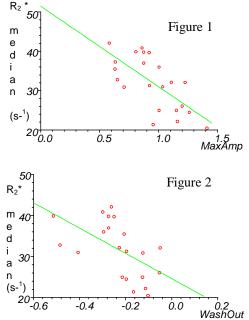
An investigation of histological and DCE-MRI correlates of intrinsic susceptibility contrast relaxivity (R₂*) in human breast cancer

A. R. Padhani¹, M-L. W. Ah-See², N. J. Taylor¹, J. J. Stirling¹, F. M. Daley², P. I. Richman², J. A. d'Arcy³, S. Walker-Samuel³, A. L. Harris⁴, D. J. Collins³, M. O. Leach³, A. Makris²

¹Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, ²Mount Vernon Hospital, Northwood, Middlesex, HA6 2RN, United Kingdom, ³CRUK Clinical MR Research Group, Institute of Cancer Research, Sutton, Surrey SM2 5PT, United Kingdom, ⁴Weatherall Institute, John Radcliffe Hospital, Oxford, United Kingdom

Introduction

Intrinsic susceptibility contrast (R_2^*) yields unique quantitative image contrast in visceral tumours whose imaging correlates are relatively underexplored. Theoretically, R_2^* is related to blood oxygenation, blood volume, blood haematocrit and other physical and physiological parameters (Howe). This study aims to assess the dynamic contrast enhanced MRI (DCE-MRI) correlates of breast cancer T_2^* relaxivity (R_2^*).


Methods

23 untreated patients with solid, non-necrotic and non-infiltrating invasive ductal carcinoma were imaged. This subgroup was chosen because in infiltrating/septal spreading disease, intact breast septae can cause increases in R_2^* and necrosis causes a paradoxical decrease in R_2^* [1]. A spoiled multiple gradient echo T_2^*w sequence (TE 5-75ms, TR 100ms, α =40°, sl 8mm, 256² matrix, single slice) was used to acquire data for R_2^* calculation (performed using an IDL[®] least-squares fitting routine). Following this, a T_1w DCE-MRI sequence with 0.1mmol/kg Gd-DTPA dose (4 slices with one matched to the R_2^* position, TE 4.7ms, TR 11ms, α =35°, 256² matrix) and a T_2^*w DCE-MRI sequence with a 0.2mmol/kg Gd-DTPA dose (single slice, TE 20ms, TR 30ms, α =40°, 128² matrix) were run. T_1w DCE-MR images were processed using MRIW software and the Tofts' model[2] (Institute of Cancer Research, London) to give quantitative and semi-quantitative parametric maps: K^{trans}, k_{ep}, v_e, maximum Gd concentration (MaxGd), maximum amplitude (MaxAmp), mean gradient and washout gradient. A gamma-variate fit was performed on the T_2^*w DCE-MR images to give relative blood volume rBV, relative blood flow rBF and mean transit time MTT. Regions of interest (ROI) were drawn around the tumour on the MR images.

N=23	Median R_2^*	95th centile R ₂ *
Pathology		
CA-IX (+/-)		
Tumour grade	P=0.015	0.0001
MRI Morphology		
Size		
T ₁ W DCE-MRI		
Mean Gradient		
Max Amp	0.0004 (r = -0.684)	0.002 (r = -0.624)
Wash-out	0.008 (r = -0.56)	0.02 (r = -0.52)
Modelling Failures		
K ^{trans}		
v _e		
Max Gd		
Rate Constant k _{ep}		
T ₂ * DCE-MRI		
rBV	0.003	0.03
	(r = -0.6)	(r = -0.46)
rBF	0.003	0.03
	(r = -0.6)	(r = -0.5)
MTT		
Only significant correlations are shown		

Histological variables (CA-IX staining and tumour grade) were acquired from biopsies or surgical specimens.

Univariate analyses were carried out, dividing histological features from morphology and DCE-MRI kinetics. Correlates were first sorted with median

 R_2^* and if significant, then with 95th centile R_2^* values. Continuous variables (all MRI parameters) were analysed with linear regression and discrete variables (histological grade) with a 2-tailed Mann-Whitney test set with a significant value set at p<0.01. Multivariate analyses were then carried out on the most significant variables from the univariate analysis. **Results**

Significant results are given in the Table. With univariate analysis, a significant negative correlation was found between median R_2^* and tumour grade (p=0.015: R_2^* 95th centile p=0.0001). Significant inverse correlations were found between median R_2^* and rBV and rBF (p=0.003, 95th centile p=0.03 for both), Maximum amplitude (p=0.0004: figure 1, R_2^* 95th centile p=0.002) and washout gradient (p=0.008: figure 2, R_2^* 95th centile p=0.02). On multivariate analysis, MaxAmp and wash-out were the only significantly correlated parameters (p = 0.0079 and 0.0006 respectively).

Discussion

There is a strong but inverse association between tumour grade and R_2^* . This is a potentially a very useful result since in general, MR imaging does not predict histological tumour grade in breast cancer. The inverse correlations between R_2^* and MaxAmp and washout as well as blood volume and flow strongly indicate that the R_2^* contrast is dominated by blood volume,

blood flow and capillary permeability. The multivariate analysis shows that as explanatory variables, the maximum amplitude and wash-out are dominant.

References

[1] Taylor, N.J et al., Proc. I.S.M.R.M. 10th Ann. Meet. 2002 p2126

[2]Tofts, PS and Kermode, AG. JMRI 1997;7:91