Early Detection of Emphysematous Changes in Smokers using Hyperpolarized ³He MRI

S. R. Panth¹, T. M. Grist^{1,2}, F. R. Korosec³, M. Evans⁴, A. L. Wentland¹, H. Fountaine⁵, S. B. Fain^{1,3}

¹Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States, ²Radiology, University of Wisconsin, Madison, Wisconsin, United States, ³Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States, ⁴Biostatistics, University of Wisconsin-Madison, Madison, Wisconsin, United States, ⁵GE Healthcare, Princeton, NewJersey, United States

INTRODUCTION

Emphysema is characterized by breakdown in the alveolar walls of the lungs in smokers. Characterization and diagnosis of chronic obstructive pulmonary disease (COPD) and emphysema relies on spirometry and high resolution computed tomography (HRCT) [1, 2]. Previous studies have shown highly significant increases in apparent diffusion coefficient (ADC) of hyperpolarized ³He in patients with emphysema [3, 4]. The goal of this work is to study the sensitivity of the ADC measure for detecting the early onset of emphysema. The ADC in the lungs of asymptomatic smokers is compared to non-smokers of similar age and gender. In addition the whole lung and regional ADC is compared to spirometry including DLCO, FEV₁, FEV₁/FVC and regional "Emphysema Index" (EI; Relative area of lung parenchyma having signal intensity < -950 Hounsfield units) derived from HRCT.

MATERIALS AND METHODS

Hyperpolarized ³He MR lung ventilation imaging was performed in twenty subjects (eleven smokers and nine non smokers; one study was incomplete due to technical reasons) using a 1.5 T MR scanner with broadband capabilities (Signa LX, GE Medical Systems, Milwaukee, WI). A vest RF coil (IGC-Medical Advances, Milwaukee, WI) tuned to receive at 48.6 MHz was used. A helium polarizer (IGI.9600, Amersham Health) used spin exchange optical pumping to polarize ³He. Each MR session consisted of proton localization and fast spin echo (FSE), followed by ³He flip angle calibration, ventilation, diffusion weighted and dynamic MRI scans to detect ventilation defects, breakdown in alveolar space and gas trapping respectively. For ventilation and diffusion-weighted scanning a spoiled GRE sequence was used with the following parameters ±15.63 KHz BW, 128 x 128 matrix, FOV (32-38) cm x (24-29) cm, and ten 1.5 cm thick slices. A 1-liter dose of hyperpolarized ³He with a net activity of 4.5 mMol was inhaled for each ³He scan. Images were acquired during breath holds of up to approximately 15 seconds. Diffusion gradients were added to the slice encoding axis (anterior/posterior direction) and phase encoded views were acquired alternately with and without diffusion weighting in an interleaved order. ECG and oxygen saturation (saO₂) were monitored throughout the imaging session. Regional analysis was performed by segmenting the lung parenchyma in the ADC maps into the apical, middle and basal region for the right and the left lungs (based on high resolution CT; Figure1).

RESULTS AND CONCLUSIONS

Our results show ADC to be a sensitive indicator of early onset of emphysema (Table 1, 2). A statistically significant correlation was observed between mean ADC and number of pack years (r_s =0.74, p≤0.0001; Table 1, Figure 2 (a)). This relationship remained significant after adjusting for age (p=0.0060). Negative correlations of mean ADC with percent predicted diffusion lung carbon monoxide (DLCO) (r_s =-0.82, p≤0.0002) (Figure 2 (b)) and FEV₁/FVC (r_s =-0.70, p ≤ 0.0008) were observed. It is important to note that FEV₁ % predicted showed no significant relationship with pack years in this data. Strong correlations between ADC mean and pack years by region were observed with stronger dependence in the apical vs. basal region. No statistical significance was observed between EI and pack years based on region. The dependence of mean ADC on DLCO was expected given that the surface area for gas exchange into the blood stream is reduced in emphysema. Our results indicate mean ADC is a sensitive measure of early changes in lung micro-structure in asymptomatic smokers.

cm ²/s 0.35 Mean ADC 0.30 0 0.25 0.20 10 40 20 30 80 90 100 110 120 60 70 Pack Years DLCO % predicted

튄

Non-smoker Smoker

Figure 2: Plots of (a) Pack Years vs. ADC Mean (b) ADC Mean vs. DLCO 9 predicted.

Table 1: Whole lung comparisons.

Color bar units: mm²/s.

 Table 2: Comparisons of ADC Mean and Emphysema Index dependence on pack years by region.

ndependent	ADC Mean (correl-	P - value									
ariable	ation coefficient, r _s)		Region	ADC Mean (Spearman's rho)				Emphysema Index (Spearman's rho)			
FEV ₁ %p	- 0.36	P ≤ 0.13		Left	p-value	Right	P-value	Left	p-value	Right	p-value
FEV ₁ /FVC	- 0.70	P≤0.0008	Apical	0.68	0.0020	0.61	0.0061	- 0.13	0.61	- 0.15	0.56
DLCO %p	- 0.82	P≤0.0002	Middle	0.61	0.0066	0.60	0.0076	- 0.46	0.058	- 0.44	0.069
Pack Years	+0.74	P≤0.0001	Basal	0.56	0.0131	0.55	0.0154	- 0.28	0.26	- 0.31	0.21
Age+Pack	+0.80	P≤0.0007									
Years											

REFERENCES

1. Chen *et al.* MRM, 1999; 42: 721-728; **2**. Yablonskiy *et al.* PNAS, 2002; 99: 3111-3116; 3. Salerno *et al.* Radiology, 2002; 222: 252-260; 4. Saam *et al.* MRM, 2000; 44: 174-179.

This work is supported by the NIH grant (P 50 HL 56396) and GE Healthcare.

2(a)) and (b) ADC map of smoker: ADC 0.289 cm^2/s (maroon box in Figure 2(a)).