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Introduction:  If it were possible to use a single-shot, high-flip-angle, echo-train pulse sequence, such as RARE or echo-planar imaging, for 
hyperpolarized-gas MRI of the lung, the signal level would be approximately 10 times higher than that for the commonly-used gradient-echo (GRE) 
methods, yielding a substantial increase in the signal-to-noise ratio (SNR).  The problem with echo-train imaging is that the diffusivity of 3He is so high 
that even the standard spatial-encoding gradients result in considerable diffusion-induced signal attenuation [1,2].  As a result the signal level decreases 
throughout the echo train, yielding significant image blurring due to attenuation of high spatial-frequency components if the total diffusion-induced signal 
decrease is large.  Thus, techniques such as RARE can only be used without significant image blurring if the spatial resolution is relatively low.   For 
example, a recently published study by Durand et al [2] states that the diffusion-dependent resolution limit in the human lung for RARE-type 3He 
techniques is 6 mm, based on an attenuation limit of 37% for the signal remaining at the end of a 36-echo train.  The goal of this work was to investigate 
a circular-trajectory RARE pulse sequence that is designed to yield much lower diffusion-induced signal attenuation than that for a standard RARE 
sequence, thus potentially allowing resolution similar to that used with GRE techniques (~3 mm in humans) but with much higher SNR.  

Theory:  The b value associated with a gradient waveform can be calculated as the integral of the squared magnitude of the k-space trajectory.  This 
relationship is extremely useful as an intuitive guide for the design of pulse sequences that yield a low level of diffusion-induced attenuation for the signals 
collected during the sequence and that, for our purposes, can be considered to be “diffusion-optimized.”  For example, a circular k-space trajectory provides 
two distinct advantages compared to a standard rectilinear trajectory with respect to diffusion-induced attenuation [3].  First, the zeroth moment for both in-
plane encoding gradients is zero over the time period between refocusing RF pulses.  This means that the k-space trajectory starts and ends at k = 0 
between each pair of refocusing RF pulses, whereas the standard rectilinear k-space trajectory starts at a high negative spatial frequency and ends at a high 
positive spatial frequency between each pair of refocusing RF pulses and thus the b value (integral of the squared magnitude of the k-space trajectory) for 
the rectilinear trajectory is significantly higher than that for the circular trajectory.  Second, only the last few segments of a circular k-space trajectory visit the 
highest spatial-frequency values, whereas every line of the rectilinear trajectory visits the maximum negative and maximum positive spatial-frequency values 
along the readout direction.  Again, this difference results in a higher b value for the rectilinear trajectory. 

Figure 1 shows the theoretically predicted effect of diffusion-induced signal attenuation in the healthy human lung for a standard rectilinear-trajectory 
half-Fourier RARE-type (HASTE) implementation compared to that for a centrically-ordered, circular trajectory.  Based on the 37% attenuation limit of 
reference 2, the spatial resolution limit for a 36-echo train is reduced from 6 mm for the standard HASTE implementation to less than 3 mm for the 
centrically-ordered, circular trajectory.  Thus, these results predict that spatial resolution comparable to that currently used for 3He MRI of the human 
lung can be achieved in conjunction with a several-fold increase in SNR compared to GRE imaging.  (The signal level for GRE would be ~0.1 in Fig. 1.) 

Methods:  To obtain experimental validation of the theoretically-predicted SNR gains, a prototype, non-optimized, low-resolution version of the circular-
trajectory spin-echo-train (SE-train) sequence was implemented and used to acquire images of a 3He phantom and of the lungs of 4 human volunteers.  
Studies were performed on a commercial 1.5-T scanner (Sonata, Siemens Medical Solutions).  3He gas was polarized by collisional spin exchange with an 
optically-pumped rubidium vapor by using a commercial system (Model 9600 Helium Polarizer, Magnetic Imaging Technologies, Inc.).  All experiments were 
performed under a Physician’s IND (# 57866) for imaging with hyperpolarized 3He following a protocol approved by our institutional review board. 

Results:  Representative circular-trajectory images are shown in Fig. 2a (phantom, projection) and 2c (lung, 15-mm thick).  Correcting for voxel-volume and 
3He-dose differences between the circular-trajectory and GRE (Fig. 2b) images, slice-selective circular-trajectory imaging yielded an SNR 9-10 times higher 
than that typically obtained with GRE imaging.  Considering the flip-angle and sampling-time differences between the sequences, theory predicts that the 
circular-trajectory SNR should be 8.6 times larger, in good agreement with the experimental result.  Note that the circular-trajectory image depicts all of the 
major features seen in the GRE image.  Nonetheless, circular-trajectory images appeared blurred compared to GRE images due to the larger voxel volume 
(6 x 6 x 15 mm vs. 3 x 3 x 10 mm) used for these preliminary measurements and, most likely, also due to T2-decay-induced [4] blurring because of the long 
echo-train duration (490 ms) used for the prototype circular-trajectory sequence.  For an optimized configuration, we anticipate that our echo-train duration 
can be shortened by a factor of 2 to 3, compared to the prototype version, thus substantially lessening the impact of T2 decay. 

Conclusions:  Theoretical and experimental results indicate that a circular-trajectory RARE pulse sequence specifically designed to yield low diffusion-
induced signal attenuation can provide, compared to commonly-used low-flip-angle GRE methods, a several-fold increase in SNR, and should thus 
permit much smaller doses of 3He to be used to achieve a selected spatial resolution.  Future work will focus on optimizing the pulse-sequence 
configuration to yield higher spatial resolution (~3 mm in-plane) in conjunction with a shorter echo-train duration. 
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Fig. 1 (left). Theoretical calculations of 
normalized signal versus echo number 
for 2D SE-train sequences (slice thick-
ness, 15 mm). The apparent diffusion 
coefficient (ADC) of 0.2 cm2/s 
corresponds to that for 3He in a healthy 
human lung. (a) HASTE.  (b) Optimized 
circular k-space trajectory. 

Fig. 2 (above, right).  3He images of (a) the 3He phantom and (b, c) the lungs of a volunteer that has 
asthma. (a) and (c) were acquired by using a circular-trajectory SE-train sequence; (b) was acquired by 
using a GRE sequence. The arrows indicate a ventilation defect. Circular parameters: TR, 3000 (a) or 
infinite (c); TE, 20 (a) or 15.3 (c) ms; matrix, 64 x 64 (32 circles); FOV, 380 mm; thickness, projection (a) 
or 15 mm (c). Fifty NEX were acquired for the phantom. GRE parameters: TR/TE, 6.7/2.9 ms; matrix, 80 
x 128; FOV, 263 x 420 mm; flip angle, 10°; thickness, 10 mm. 
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