Mn²⁺-Enhanced ¹H₂O MRI Measurement of Na⁺/Ca²⁺-Exchanger Mediated Mn²⁺ Influx in the Rat Heart During Myocardial Hypoxia

D. C. Medina^{1,2}, D. Kirkland³, P. M. Cala³, C. S. Springer Jr.⁴, S. Anderson³

¹College of Physicians & Surgeons, Columbia University, New York, New York, United States, ²Chemistry, Brookhaven National Laboratory,

Upton, New York, United States, ³Physiology and Membrane Biology, University of California, Davis, California, United States, ⁴Advanced

Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States

Introduction: Data presented herein support the hypothesis that increases in free intra-cellular (i.c.) calcium, Ca^{2+} , during hypoxia are mediated by the Na⁺/Ca²⁺-exchanger (NCX), which can be blocked with KBR-7943 (KBR), an NCX blocker specific for the reverse-direction¹. Hypoxia diminishes oxidative metabolism and lowers the i.c. pH as a result of extensive glycolysis. In addition, the hypoxia-induced cellular ATP deficit reduces Na⁺/K⁺-ATPase activity. In a compensatory attempt to restore cellular homeostasis, myocytes exchange i.c. H⁺ for extracellular (e.c.) Na⁺, *via* the Na⁺/H⁺-exchanger. The NCX, operating in "reverse" of the physiological normal net direction, exchanges i.c. Na⁺ for e.c. Ca²⁺ leading to a rise in free $[Ca^{2+}]_{i.c.}$. The transmembrane Ca²⁺ influx can be traced with a true Ca²⁺ competitor², Mn²⁺, which is observed *via* its effect on the ¹H₂O MRI signal³. The myocardial ¹H₂O R₂ ($\equiv T_2^{-1}$) value *increases* during hypoxia as long as the perfusion flow, and hence the $[Mn^{2+}]_{e.c.}$, is maintained constant—thus allowing for myocardial Mn²⁺ uptake.

Methods: The apparent rate constant, R_2^* , is a measure of hyperfine plus susceptibility contributions to transverse relaxation. Values were measured for 9 rat hearts *via* ¹H₂O MRI (AMX 9.4 T Bruker, vertical bore system), before (10 scans) and after (30 scans) the onset of hypoxia, such that each heart served as its own control. The 9 rats were divided into 3 groups of 3 rats each: $-Mn^{2+}/-KBR$, $+Mn^{2+}/-KBR$, and $+Mn^{2+}/+KBR$. The data were acquired with a single 1 mm thick transverse slice using a RARE sequence, $\alpha = 90^{\circ}$, TR = 12.3 s, TE = 0.023 s, FOV = (2 cm)^2, and matrix = (128)². Spin-density (S₀) and R_2^* values were obtained using the *Paravision*® mono-exponential fitting routine. Hearts were Langendorff-perfused^{4,5} with a 23°C modified Krebs-Henseleit solution— PO₄ and SO₄ were replaced with Cl⁻, and [K⁺]_{e.c.} was held at 15.75 mM to arrest the heart. The perfusion pressure was monitored constantly throughout each imaging session. The perfusing medium contained 25 μ M Mn²⁺ whenever applicable.

Results: One of the rats was excluded from the group receiving KBR due to an incorrect Mn^{2+} loading of the heart. The mean normalized S₀ values among the 3 groups were not significantly different before or after hypoxia, according to the non-parametric Kruskal-Wallis test for k-independent samples (asymp. p-value = 0.875). The plot below depicts the mean R₂* time-course for each group, before (scans 1 to 10) and after (scans 11 to 40) the onset of hypoxia. The mean R₂* values (in s⁻¹), before and after hypoxia, for each group are: 76.5 (±6.0) and 62.4 (±4.9); 92.7 (±4.7) and 103.9 (±9.9); and 107.9 (±6.7) and 92.6 (±6.1), for the -Mn^{2+/}-KBR (\bullet), +Mn^{2+/}-KBR (\bullet), and +Mn^{2+/+}KBR (\bullet) groups, respectively. After hypoxia, the mean R₂* values for the control group (\bullet) and that (\bullet) receiving KBR are reduced by 18.4% and 14.2% relative to their respective baseline values. The mean R₂* value for the group (\bullet) receiving Mn²⁺ but not KBR increased 12.1%, reflecting myocardial Mn²⁺ uptake. These differences are significant to p-value <0.001 according to Tukey and Bonferroni *Post Hoc* tests.

Conclusion: Decrements in control (**•**) and KBR-loaded (**•**) mean R_2^* values during the experiment reflect cardiac arrest/hypoxiainduced edema. Although S_0 values are expected to increase with edema, these changes were not significant according to the nonparametric Kruskal-Wallis test for k-independent samples. On the other hand, the mean R_2^* value for the group (**▲**) receiving Mn^{2+} but not KBR increases under hypoxia presumably because the rise in free paramagnetic $[Mn^{2+}]_{i.c.}$ catalyzes the loss of NMR coherence among ${}^{1}H_2O$ spins with which Mn^{2+} interacts, thus offsetting the edematous effects. The ability of Mn^{2+} to catalyze ${}^{1}H_2O R_2^*$ is strongly dependent on the reorientation time (τ_r) of its complex. For instance, protein-bound Mn^{2+} has a greater relaxivity than the Mn^{2+} aqua ion, because the former has a larger τ_r value.³ One may expect that increases in free $[Ca^{2+}]_{i.c.}$, and in its tracer Mn^{2+} , would translate into greater or smaller R_2^* values depending on whether this rise stems from a Ca^{2+} influx or its release from intracellular populations, respectively. Therefore, the results reported herein are consistent with the hypothesis that increases in $[Ca^{2+}]_{i.c.}$ during hypoxia result from Ca^{2+} influx rather than its release from intracellular protein. [Though unlikely, R_2^* value reduction could be

accounted for by changes in the heart geometry and increased bulk magnetic susceptibility contributions to R_2^* during the experiments.] Since the nifedipine-sensitive slow Ca^{2+} -channel^{2,6} is inoperative under hyperkallemic conditions and receptor mediated endocytosis of divalent metal cations⁷⁻⁹ is a slow process, Mn^{2+} enters the cell likely through the NCX during hypoxia—this is consistent with the observed inhibition of the Mn^{2+} effect on R_2^* by KBR.

References: (1)Amran, M.S. et. Al. *Cardiovasc Drug Rev* Winter 2003; **21**(4):255-76. (2)Nordhøy, W. et al. *NMR Biomed* 2003; **16**:82-95. (3)Lauffer, R.B. et al. *Chem Review* 1987; **87**:901-927. (4)Anderson, S.E. et al. *Am J Physiol* 1996; **270**(39):C608-C618. (5)Anderson, S.E. et al. *Am J Physiol* 1990; **259**(28):C940-C948. (6) Hunter, D.R. et al. *J. Mol. Cell. Cardiol* 1981; **13**:823-832. (7) Aisen, P. et al. *Int J Biochem Cell Biol* 2001; **33**:940-959. (8) Gunshin, H. et al. *Nature* 1997; **388**:482-488. (9) Gruenheid, S. et al. *J Exp Med* 1999; **189**: 831-841.