RELAXOGRAPHIC ANALYSIS OF THE EFFECTS OF MANGANESE INFUSION AND STRESS IN RAT MYOCARDIUM

M. Bruvold¹, J. Seland¹, S. Skarra¹, J. Krane¹, P. Jynge¹, H. Brurok¹

¹Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway

Introduction. Manganese ions (Mn^{2+}) enter cardiomyocytes via calcium (Ca^{2+}) channels in the sarcolemma, and a main fraction is distributed from cytosol to mitochondria via a Ca^{2+} uniport. Both Mn^{2+} -fluxes may be enhanced by inotropic stimuli¹. The aim of the present study was to examine MR relaxation of myocardium subjected to Mn^{2+} -infusion and a simultaneous or delayed β -adrenergic stress. A working hypothesis is that redistribution of Mn^{2+} from cytosol to mitochondria might enhance relaxation considerably due to binding to mitochondrial macromolecules.

Material and Methods. Wistar 3° rat hearts were perfused a.m. Langendorff with Krebs buffer containing MnCl₂ (25µM) and the stressor isoprenaline (10⁻⁷ M) at time intervals shown in Figure 1. Ventricular myocardium was excised and relaxation measured by Saturation Recovery (T₁) and Carr-Purcell-Meiboom-Gill (T₂) methods using a Maran Ultra instrument (Resonance Instruments, 23MHz, 37°C). Relaxography was performed within 5 min after excision to avoid major ischemic changes, and data were fitted in a two-component model ^{2,3} revealing the apparent intracellular (ic) and extracellular (ec) relaxation times.

Krebs buffer					С
Krebs buffer			Stress		C-S
Krebs buffer	Mn ²⁺				Mn
Krebs buffer	Mn ²⁺		Stress		Mn-S
Krebs buffer	Mn+Stress				Mn+S
10	5	5	5	5	٦
Figure 1: Time course in min.					

Results. Mn^{2+} -infusion shortened ic T_1 from 590 ms (C) to 290 ms (Mn) and ec T_1 from 1800ms (C) to 1200 ms (Mn). By a simultaneous stress (Mn-S) T_1 was further shortened to 190 ms (ic) and 1000 ms (ec) while a delayed stress (Mn+S) did not alter T_1 -relaxation. The effects on T_2 were minor with ic- $T_2 \sim 70$ ms and ec- $T_2 \sim 650$ ms for all groups. Population fractions were almost similar in all groups (62 % for ic- p_1 and 72 % for ic- p_2).

Figure 2: Values for T₁, T₂ and population fractions (p).

Conclusions. We confirmed ⁴ that simultaneous Mn^{2+} -infusion and β -adrenergic stress lead to a major (68/45 % ic/ec) reduction in myocardial T_1 and showed that a main part of this reduction (51/33 % ic/ec) results from Mn^{2+} -infusion only. Stress did not influence T_1 whether induced alone or delayed after Mn^{2+} -infusion. The absence of further relaxation enhancement in the latter group may indicate that residual cytosolic Mn^{2+} , after cell efflux via the Na^+ - Ca^{2+} exchanger, was reduced below a critical value necessary for redistribution to mitochondria. Altogether, our results confirm the role of mitochondria as a major sink for Mn^{2+} ions.

References. 1. Hunter DR, Haworth RA, Berkoff HA. J Mol Cell Cardiol. 1981 Sep;13(9):823-32

2. Labadie C, Lee JH, Vetek G, Springer CS Jr. J Magn Reson B. 1994 Oct;105(2):99-112

3. Nordhøy W, Anthonsen HW, Bruvold M, Brurok H, Skarra S, Krane J, Jynge P. Magn Reson Med. 2004 Sep;52(3):506-14

4. Hu TC, Pautler RG, MacGowan GA, Koretsky AP. Magn Reson Med. 2001 Nov;46(5):884-90