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Introduction In this paper, we analyze fMRI time series in the wavelet domain using a hierarchical clustering method combined with Dendrogram Sharpening [1]. This 
clustering method represents a spatial dimensionality reduction technique. Utilizing only the selected part of the wavelet coefficients can be considered as a temporal 
reduction of the data. When clustering the original (not wavelet-transformed) fMRI data, the functional component corresponding to the paradigm is separated into one 
independent cluster. However, after wavelet reduction this component is split into two different clusters with nested structure. This result might indicate the ability of 
the wavelet coefficient to capture differences in the on-sets of the activation.  
Theory Dendrogram sharpening is a model-free approach that does not require prior assumptions about the number and location of the clusters. This method removes 
observations from low-density regions producing a clear representation of the modal peaks. The similarity between two voxels is expressed in terms of the correlation 
coefficient of the corresponding time courses which is then converted into distance as d(i,j)=1 - cc(i,j), where cc(i,j) is the correlation coefficient between voxels i and 
j. Voxels are grouped into a binary tree using the single linkage method where the distance between two clusters is equal to the minimal distance of all pairs of voxels in 
two clusters. In order to make the structure of the data more apparent the tree is pruned by discarding all small-sized children-nodes with a large-sized parent node. 
Clusters in the modified tree are identified using the method of inconsistent edges, where the value of median edge length of the left (right) subtree plus twice the 
interhindge spread is the proposed threshold, beyond which an edge is considered inconsistent with respect to its left (right) child. Once the cores are identified, voxels 
discarded during sharpening are assigned to the cluster group, to which they are joined by the link of minimal length.  
Clustering in the wavelet domain Wavelet transformation is performed by computing the inner product between a signal of interest, X,  and basis functions derived by 
rescaling and translation from a selected mother wavelet. The vector of the discrete wavelet coefficients, W, can be written as W=WX, where W is an orthogonal 
matrix defining the transform. The elements of the vector of the wavelet coefficients are associated with a particular scale and are localized in time. We consider W as a 
projection of the signal vector onto the space defined by the basis function attributed to the selected mother wavelet. Selecting a part of the wavelet coefficient vector 
could be viewed as a projection of the signal space onto the affine subspace spanned by the selected wavelet basis. This procedure reduces the dimensionality of the 

data in the temporal domain. The j-th level detail reflecting the changes on the 2j-1 scale are computed as Dj=Wj
T

 Wj `X. The lower level details are usually associated 
with the noise components of the signal. By examining the details of the corresponding transform one can select a scale of interest and utilize the corresponding wavelet 
coefficients as reduced data to work with.  
Methods Scanning was performed on a commercial 1.5T GE MR scanner. The paradigm consisted of five periods of bilateral finger tapping (30sec) interleaved with 
rest (30sec). The EPI acquisition parameters were: FOV 24 cm x 24 cm, BW +/- 62.5 KHz, TR 2 sec, Flip 82 deg, 20 slices, slice thickness 7mm/gap 2mm, 64x64 
resolution. Only voxels with cross-correlation coefficient of at least 0.4 were considered. As a consequence, the number of voxels was reduced from 15,000 to about 
1500.  Upon the grouping of the remaining voxels into a binary tree, the dendrogram sharpening was performed twice with parameters: (fluff-value, core-value) set to 
(2,20) and (10,20), respectively, where fluff-value is the maximum size of a child cluster that is discarded if it has a parent node of a size greater than the core-value. 
Cluster cores were identified using the method of inconsistent edges. The final classification was run on voxels, discarded during sharpening, in order to assign them to 
the found clusters. We used a continuous Morlet wavelet decomposition to explore the temporal behavior of the obtained clusters. For the clustering in the wavelet 
domain we used a discrete wavelet transform with Daubechies wavelets of order 8. Wavelet coefficient (Fig.3) of the order 3-6 were selected as the representation of the 
reduced data based on the multiresolution analysis. 
Results Clustering algorithm applied to the original data resulted in clusters clearly associated with motor cortex, SMA, cerebellum and thalamus (Fig1). Wavelet 
analysis using a continuous Morlet transform indicates that the magnitude of the motor task specific frequency (0.016Hz) varies over time (Fig 2). Aside from this 
dominating frequency there are noticeable high frequency oscillations especially in the beginning of the paradigm. Multiresilution analysis of the mean time courses 
(Fig3) shows an interesting difference in the fourth level details for clusters A and C which reflects changes over a 16-second scale. For the voxels in the motor cortex 
area the detail structure is very similar to the level five. But for the cluster C, the frequency of the oscillations is twice higher and could be explained by the anatomical 
functions of the thalamus structure, which acts as an internal alarm notifying brain regions about the upcoming event. When a person performs an “on-off “ paradigm 
he/she anticipates the beginning and the end of each of the 30sec cycle. Every time when the cycle is about to begin or to end, thalamus cells fire an impulse. Because 
the particular paradigm activates the voxels in the motor area of the brain, the activation in the thalamus appears as a derivative of the time course of activation in the 
motor cortex. 

 
 
 

 
 

 
Fig 4 (Wavelet analysis) Two clusters 
(blue and purple) identified in the 
reduced data set using the identical 
clustering procedure. Notice that the 
areas attributed to the motor cortex and 
SMA are now split in two different 
clusters. Cluster C (Fig1) does not appear 
on the activation map.  

Fig 2 Time-frequency contour plots for the mean time courses of clusters A, B, C, 
obtained using a continuous wavelet transform with Morlet wavelet. All series have a 
significant contribution of the different magnitude and duration from the paradigm 
specific frequency of 0.016Hz, which gradually increases during the first two-thirds of 
the task time and declines later on. This behavior could, perhaps, be attributed to the 
habituation or learning effect. Also clusters B and, especially, C exhibit high frequency 
fluctuations during the first cycle of the task. 

Fig 1 Three clusters resulted from the clustering method. Cluster A shows 
strong activation in the primary sensorimotor cortex, SMA and cerebellum. 
The other two clusters were specific to the retrosplenial area B and 
thalamus C. (Only slices containing the active voxels are presented).  

Fig 3 Multiresolution analysis of the mean time courses of the clusters 
A(left) and C(right) using DWT with D(8) wavelets. First and second 
level details could be attributed to the noise presented in the data. Details 
at the fifth level look almost identical and reflect changes over physical 
scale of τ5TR = 16*2=32 secs that is almost exactly a duration of each 
activation and rest period in the paradigm.  
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