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Introduction:  Most fMRI time series analyses require the assumption that the underlying stochastic processes are 
stationary; i.e., that the statistics of the random processes do not vary over time.  This assumption is not always valid.  
Changes over time in the statistics of the time series due to (1) abrupt subject motion, and/or (2) slow changes in the 
vascular hemodynamic response due to physiological or neuronal processes, will result in fMRI time series behaving in a 
non-stationary manner.  A powerful tool for analysis of non-stationary time series is the Kalman filter [1].  Here, we 
describe an implementation of the Kalman filter for analysis of non-stationary fMRI time series. 
 
Theory:  Implementation of the Kalman filter includes a model of the system under study, as well as a model of the 
measurement process.  For fMRI experiments, the system is the voxel [2]; specifically, the voxel hemodynamic response, 
which occurs in continuous time.  The measurement process is discrete, occurring at intervals of 1 TR. Our “continuous-
discrete time extended Kalman filter” [1] is based on the matrix equations: 

System model:     )()()()()()(/ ttttttdtd uLwGxFx ++= ;  (1) 

Measurement model:        kkkk t vxhz += ))(( ;     (2) 

where x(t) = system (voxel) state vector, x(0) ~ N(x0,P(0));  w(t) = random forcing function, w(t) ~ N(0,Q(t));  u(t) = 
deterministic input (stimulus function);  zk = (fMRI) measurement vector; and vk = measurement noise, vk ~ N(0,Rk).  
Note that this model requires an “extended” Kalman filter since kh is a nonlinear function of the state variables.  We 

modeled the system state using the 5 element vector ='x  [ gyybb δδ ], where b = baseline, bδ = baseline drift 

rate, y = hemodynamic response, yδ = time rate of change of hemodynamic response, and g = gain factor relating fMRI 
measurement amplitude to the hemodynamic response.  The hemodynamic response was modeled using a linear 2nd order 
differential equation with constant coefficients:  

Hemodynamic response:   )(/2/ 2222 ttfydtdydtyd nnn ∆−=++ ωωςω , (3) 

 where  f(t) is the input, and ζ , ωn , and ∆t are constants which describe the shape of the hemodynamic response. 
 
Materials and Methods:  Non-stationary time series analysis was considered for two cases. In the first set of data, the 
subject was asked to intentionally make a small movement three or four times during a random event, bilateral finger-
tapping experiment. For the second set where there was no apparent subject motion, changes over time in the process were 
attributed to variations in the vascular hemodynamic response of the system.  BOLD weighted images were obtained 
using single-shot gradient-echo EPI readout.  Both block design and multiple event-related experiments were performed.    
 
Results and Discussion:  The estimated motion parameters, for 
one particular run, are illustrated in Fig.1(a).  These estimated 
motion parameters are used to perform motion correction.  The 
time series for a single voxel, after motion correction, is shown in 
Fig.1(b).  Note that the motion correction does not remove all of 
the signal distortion due to subject motion.  Hence, the least 
squares fit (red line) of the random binary stimulus function, as 
illustrated in Fig.1(c), is rather poor.  This is due to the fact that 
the least-squares-fit assumes that the underlying random process 
is stationary.  However, using the Kalman filter, it is possible to 
allow for non-stationarity.  Using the estimated motion 
parameters, the Kalman gain can be adjusted to, in effect, allow a 
resetting of the baseline when large subject motion occurs.  The 
Kalman gain element (1,1) is displayed in Fig.1(d).   The Kalman 
filter estimate (green line) is displayed in Fig.1(e).         
         Figure 1: Kalman filter estimation of fMRI signal. 
Here we clearly see the advantages of the Kalman filter. The Kalman filter estimate (green line) is a fit of the baseline plus 
the signal. Whereas the least-squares-fit treats all errors as measurement noise, the Kalman filter accounts for system 
disturbances that can have a long term impact on the fMRI signal resulting in permanent change in the baseline.   
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