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Introduction 
 Data-driven methods such as Independent Component Analysis (ICA) [1] are being increasingly used for the analysis of functional MRI (fMRI) data.  ICA 
operates by linearly unmixing the data into spatially independent component maps.  One advantage of ICA is that the hemodynamic response function (HRF) need not 
be accurately specified beforehand.  In General Linear Model (GLM)-based approaches, greater flexibility in modeling the HRF comes at the cost of sensitivity.  A 
method has also been developed  to generate within-groups voxelwise statistical inferences using ICA [2].  Here we describe a method to extend ICA for the generation 
of voxelwise between-groups statistical inferences, or correlations with covariates of interest.  The scaling 
ambiguity inherent with ICA is resolved by using the effect sizes, rather than the IC signal intensities, as 
the dependent variables. 
Theory 
 Data for each of N subjects is grouped into an n-X-m array, assuming that there are m voxels in 
the brain and n time frames.  Similar to the method of Calhoun et al. [2], the data for each subject is 
reduced via Principal Component Analysis (PCA) into a p-X-m array, assuming p components are present 
in each dataset.  The data are then concatenated across subjects into a pN-X-m array, and a second PCA 
reduction is performed.  ICA is then performed on the doubly-reduced dataset.  By keeping track of the 
matrices involved in the PCA reductions for each subject, individual IC maps may be generated for each 
subject.  These maps are problematic to use in a between-groups analysis since there is a scaling ambiguity 
in the IC maps (since the ICA model is only unique up to a scaling factor).  The scaling ambiguity may be 
resolved, however, by considering the unmixing matrix for each subject as the pseudoinverse of a GLM 
design matrix, and by using the effect sizes (t-scores) of the regression parameters as the dependent 
variables for a second-level analysis. 
Materials and Methods 
 Eighty-four subjects (three females and three males for each year of age from 5 through 18), 
were scanned on a Bruker 3T scanner performing a passive story-listening task using a thirty-second on-
off block design paradigm.  FMRI-EPI scan parameters were: TR/TE = 3000/38 ms, slice thickness = 5 
mm, matrix = 64 X 64, FOV = 25.6 X 25.6 cm, BW = 125 kHz.  The data was pre-processed by spatially 
filtering the data with a 4 mm Gaussian filter, and voxelwise de-meaning and normalization to a percent 
change from the mean.  The data was reduced to 40 components per subject, and to 50 components after 
the second data reduction using an Expectation Maximization (EM) version of PCA (due to the large 
matrix size) [3].  The Fast ICA algorithm [4] was used to find the independent components.  Three task-
related components (using the criterion of R > 0.65 between the average associated time course with the 
on-off task reference function) were selected for display.  For comparison, a GLM analysis was also 
performed, using the on-off task reference function (shifted by 3s to account for the hemodynamic delay) 
as the task regressor.  A within-group analysis was performed on the t-scores for the selected components 
and the GLM (Figure 1, left).  For voxels with p < 1e-5 (uncorrected) for cortical activation the t-scores 
were correlated with subject age in years (Figure 1, right) using a threshold of p < 0.05 and a spatial extent 
threshold of 7 voxels. 
Results 
 One task-related component yields results similar to the GLM-based analysis for cortical 
activation and correlation with subject age, with the superior temporal gyrus bilaterally and Broca’s area 
(left inferior frontal gyrus) exhibiting activation increases with age.  Another task-related component 
exhibits activation in the most anterior portion of the superior temporal gyrus bilaterally, with no age-
related changes detected.  A third task-related component, with activation mainly in the angular gyrus, 
exhibits increases with age only for regions likely related to attention, in the posterior cingulate and left 
prefrontal cortex.  A possible explanation for these findings is that syntactic processing, which recruits 
Wernicke’s area, is a skill that develops with age during childhood [5].  Audio-visual association, which 
recruits the angular gyrus, may be a skill which is already developed in early childhood, prior to the age 
range encompassed by the study, as is melodic/contour processing, which recruits the anterior portion of 
the superior temporal gyrus bilaterally [6]. 
Discussion 
 As shown previously [7], the group ICA procedure results in the detection of similar, but not 
identical, cortical regions as compared to a standard GLM, due to the flexibility of ICA in varying the time 
courses across subjects.  For between-group comparisons or correlations with regressors of interest, the 
ICA results signify changes in signal intensity across subjects, rather than reflecting how well the voxel time courses fit a previously specified model.  Thus, the group 
ICA procedure is able to distinguish between regions with true BOLD signal intensity changes, and regions where the impulse HRF varies across groups.  To aid 
interpretation of the results, a useful complementary test to the voxelwise analysis will be to investigate the individual subject time courses for “task-relatedness” 
according to some pre-specified criterion (e.g. correlation with the task reference function or power-spectrum analysis [8]) rather than relying on the subject-averaged 
time course.   
Conclusion 
 A method for generating voxelwise between-groups statistical inferences using ICA is proposed.  The method provides the capability of relating ICA results 
to demographic and environmental influences on cortical activation patterns.  The method compares favorably with the GLM approach and may offer more flexibility 
and power since it is not dependent on the accuracy of an a priori model. 
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Figure 1.  Composite results from GLM 
analysis (top) and task-related ICA 
components (bottom 3 rows) from 84 subjects 
performing a passive story listening task.  For 
composite activation, results are significant at 
p < 1e-5 (uncorrected); for age correlation at p
< 0.05 (uncorrected) with a spatial extent 
threshold of 7 voxels.  All images in 
radiological orientation. 
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