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Introduction 
Recent improvements in Arterial Spin Labeling techniques have made perfusion based fMRI a practical tool in the study of brain 
function.  Subtraction of tag/control pairs yields ASL noise which is whiter than standard BOLD noise, but which is sensitive to the 
specific subtraction technique used for obtaining the perfusion weighted images from the raw ASL images [TEN1](1,3,6).  ASL data 
analysis has been examined in terms of a general linear approach by Liu et al (2), who pose a general linear models (GLM) for control 
and label data.  We also pursue a GLM approach, but just consider a single model Y=Xβ+ε which embeds the tag/control modulation in 
the design matrix X, allowing for a generic differencing with DY=DXβ+Dε.  The differencing approach is specified by the contents of the 
matrix D (2).  This approach permits the consideration of no differencing at all.  Building the differencing into the model, instead of a 
filter, preserves more data. Our focus is on the efficiency of parameter estimation, as efficiency is monotonically related to statistical 
power.  In order to understand our results, we examined the frequency response of the differencing strategies to ASL signals, white and 
auto-correlated noise.  
Methods 
TurboCASL perfusion fMRI time series (N=258 samples, 500 realizations, TR=1.4 sec) were simulated consisting of random ISI events 
(uniform distribution, 5<ISI<12sec.), fixed ISI events (ISI=20sec).  AR(1) noise was added to the simulated data.  These perfusion 
series were “sampled” according to TurboCASL schemes (TR=1.4s) and differenced. A general linear model was generated as 
illustrated in figure 1 (first 50 points only). The model’s Parametes estimates from were calculated from the un-subtracted data (Method 
1) as well as the “pairwise subtraction” (Method 2) and “running subtraction” (Method 3) schemes.  The efficiency of those estimates 
was calculated as the inverse of the standard deviation of the estimates over the simulations.  The bias was calculated as the absolute 
% difference between truth and estimated value. The frequency response of the pairwise subtraction and the running subtraction were 
derived using digital signal processing theory and applied to white, 1/f noise and AR(1) noise and confirmed through numerical 
simulations.  The differencing schemes were also applied to experimental time courses containing active and non-active voxels. We 
used two coil turboCASL (4) time series data collected from a finger tapping event related experiment (ISI=18 sec, 360 sec. duration, 
TR=1.4 sec.).  Active voxels were identified by correlation analysis, and time courses (length = 258 points) were extracted from 87 
active voxels, and from 87 non-active voxels in the frontal lobe. 
 
Results: Table 1 shows the calculated estimated efficiencies in each of the three methods expressed relative to pairwise subtraction. It 
should be noted that the running subtraction differencing approach produces more efficient estimation of the model parameters and the 
least bias. This is consistent with the predicted effects of the differencing schemes on the frequency spectrum of data (see figure 2).  
Note that the effect of alternating the control and tagged images is akin to modulation by the nyquist frequency, effectively pushing the 
paradigm’s energy to the higher frequency range in the spectrum. The theory and simulations show that the un-differenced and running 
subtraction methods preserve the high frequency content of the data without aliasing.  Running subtraction has the added benefit of 
removing the majority of the autocorrelated noise.  Sinc subtraction was also considered and found to yield similar results to pairwise 
subtraction with variations depending on the interpolation kernel’s characteristics (not shown). 
 

Table 1. 
Relative Estimation Efficiency and 

Bias of the three differencing 
methods. 

  

 Efficiency 
(rel. units) 

Mean 
Bias  

I. No 
Differencing 1.31 45% 

II. Pairwise 
subtraction  1.0 57% 

III.Running 
subtraction 1.33 42% 

Figure 1.  
Design Matrix 

 

 

Figure 2.  
Frequency Responses in Experimental Data 

 

Discussion: In contrast to the white noise found with pairwise differencing, our work requires autocorrelation estimation for accurate 
intrasubject inference.  However, it should be noted that group inferences do not require intrasubject variance estimates, as a combined 
between and within subject variance estimate is made implicitly at the second level (5).  Hence intrasubject parameter efficiency, and 
not intrasubject variance estimation, should be the primary concern in group inference based on ASL data. 
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