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Introduction This abstract uses Monte-Carlo simulations to compare the precision and accuracy of reconstructed
fibre directions from three recent diffusion-MRI reconstruction algorithms: PASMRI [1], Qball [2] and spherical

deconvolution [3]. We limit investigation to a spherical sampling scheme and use simple test functions for the 5 X x
particle-displacement density function p. This extends preliminary work in [4], which compares the fraction of X x X

trials in which PASMRI and Qball recover approximately the right direction from similar test functions with no . X x
false positive directions. The results in [4] show that PASMRI recovers directions more consistently at lower _

SNR and b-values than Qball. B i s
Methods All three agorithms return a function of the sphere with peaks that provide fibre-orientation estimates. £ X § o f 1
In PASMRI, the function is called the persistent angular structure (PAS). In Qball, the function is an 4 g g
approximation to the orientation distribution function (ODF). In spherical deconvolution, the recovered function & m
is called the fibre-orientation distribution (FOD). 3 1@

We use variations of three simple test functions: p; = G(x; Dy, t) (one-fibre simulation), ps = o G(x; Dy, t) + (1 -

) G(x; Dy, t) (two-fibre simulation) and ps = (G(X; Dy, t) + G(X; Do, t) + G(x; Ds, 1))/3 (three-fibre simulation), ZD—?S s s 25 s a5 4
where o [0, 1] isa mixing parameter, G(e; D, t) is the zero-mean Gaussian function with covariance 2tD and the br10%sm2

diffusion tensors are D; = diag(Ay, Az, A2), D2 = diag(Az, A1, A2) and D3 = diag(Aa, Az, A1). By default, & = 0.5, A, ’ ‘ ‘ ‘

=1.7x10° m? st and Tr(D;) = A1 + 24, = 2.1 x 10° m? s*. We synthesize data by sampling the Fourier transform 7 )I( >1< % {( {(

F of p a each wavenumber sampled by the imaging sequence, adding a random complex number with {( % ,I(
independent real and imaginary parts drawn from N(O, ¢°), where o= F(0)/Sand Sis the signal to noiseratio at b s {( e

= 0, and taking the modulus. =5 } I I %
We determine the peak directions of the PAS, ODF and FOD numerically. In each case, we sample the function < I

at each vertex of 1000 random rotations of aregular icosahedron. We find the list of sampled points that are local =X I }

maxima in the sense that the function is larger at that point than any other sampled location within a search . I EIJ 'ij i fb i 1
radius, which we set to 0.4, of that point. Finally, we refine the locations of the peaks from these local maxima

using Powell’slocal optimisation algorithm [5]. 2 EIJEIJ @ i
To determine the precision and accuracy of recovered orientations, we run 256 independent trials. We use a i) @
simple clustering technique to associate corresponding peaks between different trials. To compute the s 1 2 3 4 5 6 7
concentration of a population of corresponding directions, we compute the mean dyadic tensor Y = %; x; x," and b/10®sm™

take the largest eigenvalue 3, which is zero for isotropically distributed directions and one for a population of 5 ‘ ‘ ‘ x X

equal directions. The corresponding eigenvector 4 is the mean direction of the population. We repeat this 5 X ’I‘
experiment over 10 random rotations of the test function and compute the mean, maximum and minimum &;. For 45 X

a better comparison scale, we use K xi) = -log(1 - x3) as the direction-concentration statistic. A distribution of 4 X

directions with 95% of the samples within 60° of the mean has K ki) = 2; when the 95 percentile is 10° from the =35 %

mean, A1) = 5, and when it is 3° from the mean, ¥ x1) = 7. For Qball and PASMRI, we use the parameter i;; .

settings specified in [4], which crudely maximize the number of trials that give the expected number of peak = X i I 1 I

directions. For spherical deconvolution, we use the default parameter settings of the software [3]. 25 X 3 ! i
Experiments and Results Figure 1 plots the mean (over the 10 rotations) &; of the most significant (on average) 2 X{ iqp@ o i} 3
peak direction as a function of non-zero b-value in the spherical sampling scheme for p;, ps and p; using 15 o o
PASMRI, Qball and spherical deconvolution. The error bars show the maximum and minimum x; over the 10 , ‘ ‘ ‘
rotations. The spherical sampling scheme has six measurements at b = 0 and 54 measurements at the non-zero b, 0 1 2 s 4 5 6 7

which come from the electrostatic energy minimization in [1]. We model a PGSE sequence with EPI readout on br107s m”

a standard 1.5T scanner to estimate the TE required for each b-value and reduce the signal to noise ratio, S, Figure 1. Average x; of one reconstructed
accordingly assuming T, = 0.08 s. Wetake S=20 whenb = 1.0 x 10° s m?, direction from p; (x), ps (¢) and ps (71) with
Additional experiments study the precision and accuracy of the reconstructions as the angle (n/2—a) between the PASMRI (top), Qball (centre) and deconvolution
principal directionsin p; changes. In this experiment, we mimic the parameters of an imaging sequence that isin (bottom) against b.

routine use at an imaging centre in London. This sequence a so acquires 6 measurements at b = 0 and acquires 54

measurements with b = 1.6 x 10° s m?. We take S=16, which is close to that observed in scanner data in white matter regions. The mean &; (not shown) decreases as a
increases for all three methods. Figure 2 shows the bias in one of the reconstructed direction by plotting the

average (over the 10 rotations) angle between 1 and the closest principal direction of the test function. The plot 08
for the second direction shows similar trends.

Conclusions and Further Work The results show that the optimal b-values for the methods differ for these test o7
function. Qball and PASMRI are best with be[1.0, 1.5] x 10° s m? in the one-fibre case and b = 2.0 x 10° s m* 06

for two or three fibres. Spherical deconvolution requires much higher b-values in the one-fibre case and slightly
higher for two or three fibres. The peak direction-concentrations are similar for Qball and PASMRI, but lower
for spherical deconvolution. Note that «; is insensitive to spurious or missing peaks, so the results shown here
should be considered in parallel to those in [4]. The results of varying a show that PASMRI gives the lowest
bias; the large error bars for Qball and spherical deconvolution suggest that these algorithms fail at this low SNR

He(oos™'( ., )

and b-value. Further simulations will characterize the relative performance of these algorithms in more detail. 02
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