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Introduction 
Quantifying and presenting variability when analyzing diffusion tensor MRI (DT-MRI) data is difficult when using scalar summaries of the diffusion tensor 
(e.g., fractional anisotropy or FA).  Distribution-based standard errors of the tensor elements, from linear regression theory, are not easily applicable to non-
linear functions of the tensor.  Estimating variability in DT-MRI is needed to objectively follow disease progression, in therapeutic monitoring and to provide 
consistent readouts of pathophysiology.  Quantifying and visualizing standard errors in the parameters of interest provides immediate insight into potential 
errors in the data and where subsequent analysis techniques (e.g., tractography) may encounter problems.  The naïve bootstrap has been used to explore the 
variability of the diffusion tensor and derived measures, such as FA, [1] but under the assumption of repeated acquisitions in each direction.  The wild bootstrap 
[2] is shown to produce standard errors when only one scan per direction is available.  Bootstrap distributions for the diffusion tensor elements follow 
Gaussianity, while bootstrap distributions for the eigenvalues and FA exhibit non-Gaussian forms.  Simulated data, using the method in [3], and a real data set 
illustrate the technique.  Efficient computation is achieved by formulating the least-squares estimation problem as a multivariate multiple linear regression. 
 
Methods 
The wild bootstrap is a method for model-based resampling in heteroscedastic linear regression with an unknown form; i.e., when the errors follow a non-
constant variance.  This is true when estimating the diffusion tensor since different diffusion weights and gradient directions are used.  Instead of resampling 
from the residuals of the linear regression (only valid in the homoscedastic case), the wild bootstrap samples from a two-point distribution and multiplies this 
random variable with a rescaled version of the residual using a local estimate of the covariance matrix.  Computations are efficiently performed by rewriting the 
voxel-wise estimation problem as a multivariate multiple linear regression, where the response (signal intensity) is a matrix.  Thus, one application of a QR 
decomposition (or SVD) yields the diffusion tensor estimates for all voxels simultaneously.  Analytical eigenvalues [4] are also used to increase efficiency.  The 

simulated data used a ratio of 2:1:1 for the eigenvalues with 3100.1 −×=λ  [3].  Gaussian white noise, at 10% of the signal intensity at b = 0, was added to the 
real and imaginary components of the signal.  For the observed data, 70 directions (60 diffusion-weighted + 10 T2) were obtained from a Siemens Trio 3T 
scanner using an 8 channel head coil.  64 slices were acquired with parameters TR/TE = 9200/89ms, b = 700s/mm2, gmax = 26mT/m, with an acquisition time of 
10'53''.  The diffusion gradient directions were obtained using the electrostatic repulsion method [5]. 
 
Results 
Diffusion tensor estimates were 
obtained for the simulated data and 
the variability of those estimates, 
along with the eigenvalues, was 
investigated using the wild bootstrap.  
For 1000 iterations, the bootstrap 
distributions for the eigenvalues (Fig. 
1a) are similar to those obtained by 
Monte Carlo (MC) computer 
simulation in [4].  The bootstrap 
distributions do not capture the 
skewness observed in the MC 
simulation and slightly underestimate 
the spread.  However, these results 
are quite encouraging since 100,000 
independent realizations were used in 
the MC simulation, while only a 
single data set was used in the 
bootstrap procedure.  Estimates of FA 
were obtained from a single slice of 
the DT-MRI data (Fig. 1b, left).  
Bootstrap standard errors for FA, 
based on 100 iterations, show 
increased variability in the non-brain 
voxels not properly masked around 
the border of the brain (Fig. 1b, 
middle).  Elevated standard errors are 
also apparent in the anterior portion 
of the brain and bilaterally posterior to the genu.  Established white matter tracts exhibit similar error to voxels with low FA.  This is highlighted in the image 
where FA is normalized by the voxel-wise bootstrap standard errors (Fig. 1b, right).  Extremely high FA values, usually at isolated pixels, exhibit large standard 
errors and are de-emphasized in the normalized FA image.  This indicates either that the acquired data was possibly corrupted or the diffusion tensor model may 
be inadequate to describe the observed diffusion characteristics.  White matter tracts with relatively little error remain in the normalized image. 

Figure 1: [a] Bootstrap realizations of the eigenvalues (λ1, λ2, λ3) from simulated data with ratio 2:1:1. Orientations (from left to right) are collinear, non-
collinear with (0°,30°,15°) and non-collinear with (0°,170°,60°). [b] Fractional anisotropy (left), bootstrap standard errors of FA (middle) and FA normalized 
by the bootstrap standard errors (right). 

 
Discussion 
We have provided a method for quantifying variability of non-linear functions of the diffusion tensor using the bootstrap.  Measures of the standard error for 
derived quantities, such as FA, may be estimated rapidly using common computational platforms even when the scanning procedure obtains only a single scan 
per direction.   Results from a DT-MRI analysis can now provide both estimates and measures of their variability, allowing researchers to scrutinize the quality 
of the data acquired or the validity of the diffusion model used. 
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