
 

Figure 1: Plot of δc  vs. 
cylinder radius a. 
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Introduction: White Matter (WM) tracking is a diffusion MRI technique with great potential for studying WM structure in healthy subjects and 
patients.  Several WM pathologies, e.g. multiple sclerosis, affect the diffusion properties of water in WM structures by changing the membrane 
permeability, and/or changing the size of the cells constraining the movement of water.  Normal brain development also leads to changes in WM 
structure.  It is thus important to understand the relation between the diffusion MRI signal and the structure of WM.  Two MRI techniques that have 
shown promise in revealing WM structure are q-space imaging (QSI) (1,2) and q-ball imaging (QBI) (3,4).  The problem of using these techniques to 
study WM structure in living humans is that the structural interpretation of both QSI and QBI requires a simple relation between the diffusion MRI 
signal and the water displacement properties.  Here, a simple relation means that the average dephasing for a fixed displacement must be analytically 
known, and must be independent of the local value of the diffusion coefficient (5,6).  If the duration of the diffusion encoding gradients, δ, is very 
small, then the relation between the diffusion MRI signal and the water displacement probability is simple. The problem in both QSI and QBI is that 
MRI in living humans needs a long δ.  Other simulation studies (5,6) have shown that it is possible to obtain a simple relation between the diffusion 
MRI signal and the water displacement properties in many situations, even for a long δ.  Those studies (5,6) were limited in that they did not use a 
realistic model of WM tissue, and only considered QSI and not QBI.  Both problems are addressed in this abstract. 
Theory: QSI formalism: In the most general case, the relation between physical displacement probability P r,∆ + δ( ) and MR signal intensity 

E g,∆,δ( ), with g the diffusion-encoding gradient, is expressed by the integral 

  
E g,∆,δ( ) = cos ηtrue γδg⋅r( )P r,∆ + δ( ) dr∫ , where 

  
ηtrue ≡ cos−1 Re r,∆ + δ eiφ

g,∆ ,δ
γδg ⋅r[ ] 

  
 
  
, and r,∆ + δ eiφ
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is the average dephasing for a fixed displacement r during the diffusion time ∆+δ (5,6).  In the case of free-
diffusion, it was obtained (5,6) that ηtrue is independent of the medium's diffusion coefficient.  In an actual QSI 
experiment, one attempts to invert the above integral using an ηguess that might be different from the correct ηtrue 
for that experiment. If ηtrue is independent of g and r, then the relation between the physical displacement 
probability P r,∆ + δ( ) and the experimentally obtained displacement probability PMR r,∆ + δ( )ηguess

 is: 

  
PMR r,∆ + δ( )ηguess

= ηguess ηtrue[ ] P  ηguess ηtrue[ ] r,∆ + δ( ).  QBI formalism: If one is only interested in the orientation 

probability, instead of the displacement probability, then instead of QSI (1,2) it might be best to use QBI (3,4).  
In the QBI formalism, the orientation distribution function (ODF) (3,4) in the direction of the unit vector u is 

  
Ψ u( )≡ P bu,∆ + δ( ) db

0

∞

∫ .  To obtain the ODF using MRI at a fixed q-amplitude q', one uses 
  
Ψq ' u( )MR ≡ E q ,ϑ,ζ{ },∆,δ( ) δ q − q '( ) δ ζ( ) q dq∫ dϑdζ , 

where the vector q is now represented in cylindrical coordinates, with the z-axis pointing along u.  In this coordinate system q is represented by 
amplitude q, angle ϑ  and z component ζ.  The relation between the ODF and the probability of displacement perpendicular to u, 

  P ru,θu{ },∆ + δ( ), 

is obtained in (3,4).  In our slightly altered version of QBI, we take into account the effects caused by the non-infinitesimal value of δ, and obtain 

    
Ψq ' u( )MR = q '   P ru,θu{ },∆ + δ( ) J0 ηtrueq 'ru( ) ru d∫ rudθu  where J0 is the zero-order Bessel function, which is similar to the corresponding equation 

in (3,4) and approaches the ODF Ψ u( ) for large ηtrueq'.  Limits of QSI and QBI formalisms: For completely restricted diffusion inside a cylinder, the 

expression for ηtrue, if Din∆[ ] a2 is small, is: 
  
ηtrue ≈ ∆ − δ

3[ ] ∆ + δ[ ] 1−1.42 Din∆ a2[ ] ∆ ∆ − δ
3[ ][ ].  Three conclusions are drawn from the previous 

expression. The first conclusion is that, in the large a limit, 
  
ηtrue = ∆ − δ

3[ ] ∆ +δ[ ] .  The second is that ηtrue is dependent on both g and r in the case of 

small a, which makes it impossible to obtain reliable water displacement probability information from E g,∆,δ( ), be it either P r,∆ + δ( ) or Ψ u( ).  

The third is that the effect of restriction on ηtrue is a decrease from 
  
ηtrue = ∆ − δ

3[ ] ∆ +δ[ ] , in agreement with the results in (5,6).                                          

Simulation Results: We did computer simulations of water diffusion in WM-like tissue modeled as an array of permeable cylinders. For each value 
of δ, 3000 random walks are calculated. Each random walk has steps defined by a time-jump dt of 0.04 ms (7), which corresponds to a step of 
amplitude 6D dt , where D is the diffusion coefficient of the medium at the step start.  The values of the diffusion coefficient are 1.0 micron2/ms if 
the step start is inside the cylinder, Din (8), and 2.5 micron2/ms if the step start is outside, Dex (8).  For all simulations, ∆+δ =60.0 ms, the maximum 
value of δ is δ=∆, and |g| is 18.0 mT/m.  The intra-extra exchange time Tin-ex is 600 ms (8,9), which for a cylinder of radius a corresponds to an intra-
extra exchange probability 

  
Pin−ex =  2a dt 6Din[ ][ ] Tin−ex − a2 8Din[ ][ ] (7), and an extra-intra exchange probability of Pex −in = Din Dex Pin−ex  (7). If ηtrue 

obtained in the simulations stops being within 10% of 
  
ηtrue = ∆ − δ

3[ ] ∆ +δ[ ]  as we increase δ, we consider to have reached the highest acceptable δ 

value, δc.  The value of δc for different cylinder radii a and angles between the cylinder axis and g are in Fig. 1.  If δ>δc, then it is not possible to 
relate the diffusion MRI signal and the displacement probability in either QSI (1,2) or QBI (3,4). In Fig. 1, different lines correspond to different 
angles between g and the axis of the cylinder: 90o-black circles, 88o-red stars, 86o-green squares, and 84o-blue diamonds. 
Conclusion: QSI and QBI depend on δ differently, but both can determine WM structure accurately in typical experimental circumstances. 
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