Intravascular effects in velocity-selective arterial spin labeling: the choice of transit delay and cutoff velocity

W-C. Wu¹, E. C. Wong¹

¹fMRI Center, University of California, San Diego, La Jolla, CA, United States

Introduction

Velocity selective arterial spin labeling (VS-ASL) creates a modulation of longitudinal magnetization of blood on a basis of flow velocity (1,2) rather than spatial distribution as has been commonly used in conventional ASL methods. By incorporating a VS pulse train, only blood flowing above a cutoff velocity (V_c) is tagged. Theoretically, VS-ASL is capable of generating tags very close to the region of interest and thereby avoids the confounding error coming from transit delay (T_v). In practice, however, T_v of VS-ASL should still be chosen with caution in consideration of intravascular signal and V_c . This study tries to investigate the influence of large vessels and evaluate the optimal T_v for different V_c at motor cortex.

Materials and Methods

In the presence of laminar flow, a 90⁰-gradient-180⁰-gradient-90⁰ pulse train can be used to tag spins by generating a sinc-shaped profile of longitudinal magnetization vs. flow velocity (1-3). In this study, the 180⁰ pulse was replaced by a pair of identical adiabatic 180⁰ pulses for the purpose of reducing the effect of RF inhomogeneity (4). After a delay T_v allowing for the delivery of tags, single shot spin echo spiral images were acquired with flow weighting gradients that were adjusted to the same V_c as the tag pulse. In other words, the ASL signal only included blood that was tagged at velocities above V_c , and then decelerated to a velocity below V_c prior to imaging. The ASL signal was therefore in principle proportional to CBF· T_v ·exp(- T_v/T_{1b}), where T_{1b} was the longitudinal relaxation time of blood. The flow-sensitive gradients were applied along three orthogonal directions. Relevant imaging parameters included: FOV=24cm x 7mm, T_v ={300, 500, 700, 900, 1100, 1300, 1500}ms, V_c ={1, 2, 8}cm/s, TR=2500ms. Imaging was performed on a 3T GE EXCITE system on healthy volunteers. Image masks were created by thresholding the ASL images obtained by T_v =300ms and 1500ms with different V_c . We assumed that 1500ms delay was enough for tags to reach capillary beds whereas most of the tag remained in arterioles or arteries at 300ms.

Results

Figure 1 shows the difference between VS-ASL images acquired with V_c =2cm/s and 8cm/s. Subtracting high V_c from low V_c and the reverse indicate the mismatch at small (upper row) and large vessels (lower row), respectively. When T_v increases, allowing high-speed tags to decelerate into capillaries, the mismatch decreases in the scope of small vessels. On the other hand, noticeable mismatch in large vessels is found through different T_v . The influence of large vessels under high V_c can be further demonstrated by figure 2. The ASL signal extracted by a mask of large arteries shows an early peak in contrast to the signal at tissue and capillary bed. The discrepancy on the other hand is not found when V_c is below 2cm/s. Table 1 shows the calculated diffusion-related attenuation in CSF and brain tissue caused by the tag pulse train. CSF artifact for $V_c > 1$ cm/s is negligible.

Discussions and conclusions

Significant signal from large vessels are present in VS-ASL images for V_c of 8 cm/s. Lower V_c is recommended for quantitative measurement of tissue perfusion and the optimal T_v for $V_c=1-2$ cm/s at motor cortex is ~900ms. In this study, the lower amplitude and longer separation of diffusion gradients in the VS pulse traduces b value and thereby obviates the necessity of CSF suppression for

 V_c down to 1cm/s, making VS-ASL more time efficient (2,5). *References*

- 1. Wong EC et al. Proc ISMRM p.621, 2002.
- 2. Duhamel G et al. Magn Res Med 50:145-153, 2003.
- 3. Norris DG et al. J Magn Reson 137:231-236, 1999.
- 4. Conolly S et al. Magn Reson Med 18:28-38, 1991.
- 5. Wong EC. Proc ISMRM p.711, 2004.

Fig 1. Subtraction between ASL signals obtained with two different V_c . V_c =2 minus V_c =8 (upper row); V_c =8 minus V_c =2 (lower row). From left to right, T_v ={300, 700, 1100, 1500}ms. Fig 2. ASL signal vs. transit delay (left V_c =2, right V_c =8). Two masks were used by thresholding ASL images that were acquired with V_c =2cm/s, T_v =1500ms (blue) and V_c =8cm/s, T_v =300ms (red). Two ASL images were shown at the most left column in the same scale.

Table 1. Diffusion-related attenuation caused by the tag pulse train

Vc (cm/s)	1	2	8
1-e ^{bD} (CSF)	0.227%	0.057%	0.004%
1-e ^{bD} (brain)	0.091%	0.023%	0.001%

