
Figure 2  CBF obtained 
using vascular model 
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Introduction 
Perfusion weighted MRI has proven very useful for deriving haemodynamic parameters such as 
CBF, CBV and MTT. These quantities are important diagnostic tools, e.g. in acute stroke, where 
they are used to identify ischemic regions. In this study we estimate perfusion parameters based 
on a vascular model specifically representing heterogeneous capillary flow. We use a fully 
Bayesian approach in order to obtain posterior probability distributions for all parameters. This 
allows us to perform inference on perfusion parameters at the voxel level, either within or 
between subjects. 
Theory 
We use a vascular dynamic model similar to [1] and [2] (see 
Fig. 1). At each voxel, blood is delivered from an artery to a 
capillary network represented by N tubes in parallel. The 
transit time for a particle in the i’th tube is Ti and the fraction 
of particles passing through this tube is hi. Hence the hi’s give 
an estimate of the transit time density function h(T). The mean 
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time curve and Ca(t)  is the (known) arterial input function. Finally, CBF can be calculated using 
the central volume theorem, i.e. CBF = CBV/MTT. The effect of the artery is modeled using a 
delay parameter d. 
Materials and methods 
To solve for the parameters ),,...,( 1 dhh N=θ  we use a Bayesian system identification approach 

described in [3]. The input presented to the system is Ca(t) and the states of the system are the 
tracer concentrations in each tube. The output is the total concentration of intravascular tracer 
C(t) in the system, observed at each scan. We assume Gaussian observation error with zero mean 

and unknown variance 2σ , i.e. white noise. To create a physiologically informed model we 
assume a Gaussian prior, i.e. ),(~ θµθ ΣN . Data was acquired using GRE-

EPI on a 1.5T scanner with TR=1.5s. 
Results 
Fig. 2 shows a typical CBF image obtained using our 
vascular model. Inspection of fits of concentration time 
curves shows mostly good agreement between an SVD-
based approach [4] and our approach. However, when a 
delay effect (1.7 s) is present our method seems to better 
capture the response (Fig. 3). 
Discussion 
The major advantage of our model, compared to the 
SVD-based approach, is its parameterization in terms 
of physiological states. This allows us to use existing physiological prior knowledge. Using prior 
knowledge can increase sensitivity when classifying ischemic tissue. Priors can be either derived 
from the same subject, e.g. by using global tissue-specific priors, or from an age-matched control 
group. The Bayesian techniques employed here can also be used to visualize voxel-specific point 
estimates and their posterior standard deviations. 
References: [1] Kroll et.al., AM. J. Physiol 1996. [2] Østergaard et.al., JCBFM 1999. [3] Friston 
et.al, NeuroImage 2003. [4] Østergaard et.al, MRM 1996. 
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Figure 3  Fitted  concen-
tration time curves 
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Figure 1  The vascular model 
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