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Introduction 
Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool that allows distinguishing brain malignant tumors from non-anaplastic tumors [1]. Metabolic maps can 
be obtained by the Chemical Shift Imaging (CSI) technique but they lack the spatial resolution necessary for therapy considerations. Relaxation studies have been used 
long ago for the assessment of tumors, being the T2-map of a tissue often used as a basis for interpreting clinical images [2]. Diffusion-weighted MRI has been used 
successfully in the central nervous system (CNS), specially in the diagnosis of acute stroke, but also in distinguishing different components of brain tumors. In the 
present work, it is proposed the use of MRS, Relaxometry and Diffusometry for the segmentation of brain tumors. 

Image Measurement and Analysis 
CSI was performed axially to obtain spatial distributions of metabolite concentration across the lesion, TE = 30 ms and VOI of 96 cm3 (80 x 80 x 15 mm). Relaxometry 
studies were performed using the standard multiecho sequence (CPMG) with 16 echoes, with a base echo time  TE = 22 ms and 8 axial planes 5 mm thick centered at 
the tumor. Diffusion-weighted images were obtained for 16 b-parameter values ranging from 0 to 1350 s/mm2 and 3 orthogonal magnetic field gradient directions 
(Phase, Read and Slice) for the same set of planes used in the relaxometry studies. The spectroscopy data analysis was performed based on relative values. The critical 
Cho/NAA ratio value for which a tissue was considered malignant was 1.3 or over. The spectra were considered atypical if the Cho/NAA ratio had a value between 0.9 
and 1.29. For the analysis of relaxation and diffusion data, a special image processing algorithm was developed to extract the magnetization decays for different regions 
of interest or ROI´s. They were processed by an Inverse Laplace Transform (ILT) algorithm [3] to obtain the relaxation rates or diffusion tensor components present in 
the lesion. For each voxel the set of parameters obtained were assigned to a different state of the tissue (normal, pathologic, necrotic or edema) on comparison with the 
CSI data, using it as a sort of virtual biopsy. 

Segmentation Procedure 
Instead of applying the ILT algorithm pixel by pixel, which is a time consuming procedure with a low S/N ratio, the image intensity in each pixel (in a set of multiecho 
or multi-b images) was assumed to be a linear combination of exponential functions characterized 
each one by a decay parameter (relaxation rate or diffusion tensor component) associated to tissue 
type: I(t)=bl+ARXR(t)+AGXG(t)+ABXB(t) where Xi(t)=exp(-λit) with i = R, G or B, λi is the decay 
parameter associated to the tissue, previously determined by application of the ILT algorithm over 
selected ROIs and bl takes into account corrections in the baseline of the image intensity. The 
coefficients Ai, which are positive, give the proportion for each decay in the image and are 
determined by linear regression. The indexes were selected according to a RGB color code: R (red) 
corresponds to tumor, G (green) to normal or unaffected tissue and B (blue) to edema or necrosis [3], 
giving a color map in which each color component appears depending upon the proportion of the 
tissue type associated to that color. The selection of the color code is completely arbitrary and 
somewhat troublesome for clinical purpose, as it will be disscused below. Particular attention was 
paid to the correlation coefficient in the linear regression analysis so only coefficients Ai were 
accepted for those fittings with a correlation coefficient squared higher than 0.99. To further asses 
the segmentation procedure and in order to eliminate spurious and isolated "tumor positive" pixels 
due to the fact that exponential functions are correlated, each pixel affected by the presence of 
tumor, i.e., AR is different from zero, is averaged over its neighborhood and accepted as a true 
"tumor positive" if and only if its average p is greater than 1/3. This kind of  filter allows for a more 
compact segmentation of the tumor and discards scattered "tumor positive" points in the image. 

Results and Discussion 
For a total of 10 patients the relaxation rates were within the following ranges: edema or necrotic tissue, 0.65 - 
3.43 s-1, tumor tissue, 5.05 - 7.47 s-1 and normal or non affected tissue (gray/white matter or meningeal tissue), 
8.67 - 25.26 s-1. Typical values for the average p covered a range 0.71 - 0.96. Control values of p were found in 
the range of 0.44 - 0.69. Figure 1 shows a typical result of segmentation using relaxometry  and diffusometry 
data. Instead of using a color map in Figure 1, the RGB code is mapped on a gray scale as follows: for each 
pixel, the maximum of the Ai coefficients is determined; depending on the outcome (R,G or B), its value is 
mapped as: AR in 206 - 255 (light gray), AG in 51 - 205 (gray) and AB in 0 - 50 (dark gray). This type of 
mapping resembles very well gadolinium contrasted images, which are familiar to radiologists. It preserves 
anatomical details, which are of relevance for image co-registration in therapy planning. The segmentation 
based on diffusion-weighted images is more troublesome since diffusion is anysotropic and so it depends on the 
gradient direction.  In order to deal with scalar quantities, the diffusion-weighted images corresponding to the 
three orthogonal directions (P,R,S) are combined into a single set of  diffusion-weighted images corresponding 
to the trace of the diffusion tensor. The distribution of apparent diffusion coefficients (P,R,S,T) over the lesion is 
shown in Figure 2. The same happens if other scalar quantities are considered, such as fractional anisotropy or 
relative anisotropy. Nevertheless, diffusion-weighted images can be used to define clearly what corresponds to 
unaffected tissue which exhibits high anisotropy opposed to tumoral or necrotic tissue with low anisotropy. In 
Figure 3 it is shown the resultant distribution of anisotropy for a tumoral lesion and unaffected tissue.. 

Conclusions 
The methodology presented in this work clearly segments brain tumor images with appropriate spatial resolution 
for therapeutical needs. Other parameters, such as anisotropy can be considered to further improve the 
segmentation quality, but depends on the software available to the MRI facility. Finally, image registration for 
different data such as relaxometry or diffusometry seems to be the best way to assess a confident segmentation 
of the tumor image. 
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Figure 3. Comparison of anisotropy 
distributions between tumoral lesion (red 
dots) and unaffected tissue (black dots) 

  
Figure 2. Distributions of diffusion coefficient 

  
Figure 1. Left, segmented image using relaxation data. 
Right, segmented image using the trace of the diffusion 

tensor 
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