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Introduction 
Several works have been published on the use of the microstrip resonators in MRI systems [1]-[5]. Models based on quasi-TEM approximation and matrix capacitance 
and inductance calculation are applied for the analysis of microstrip transmission line (MTL) coils [3], [5]. With the increase of field strengths, rigorous computational 
electromagnetic techniques become an essential tool for designing and evaluating RF MTL coils. In this work, a full-wave model of a multilayer multiconductor 
microstrip patch antenna M3PA/MTL is developed based on the electric field integral equation (EFIE) and the spectral dyadic Green’s function (SDGF) concepts. The 
problem of the resonance frequency, the electric current distribution on the patch conductors and the field distribution in the structure is rigorously formulated using the 
spectral domain integral equation method. The cross section of the cylindrical M3PA/MTL to be analyzed is shown in Fig. 1. A brief outline of the theory used to 
compute the results for the cylindrical M3PA/MTL is given in the following paragraph. 
Theoretical formulation 
The tangential field components in the spectral domain at ρ =ρi and ρ =ρi-1, are related by a (4x4) transition matrix T  whose elements are expressed in terms of Bessel 
functions of the first and second kind and their derivatives. Next, one imposes the continuity conditions of the tangential electromagnetic field over the interfaces and 

the jump condition onto the interface conductors ρ =ρM. Thus, a relation is obtained between the tangential electric field 
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= ⋅Γ Γ Γ  and M  is a (2x2) matrix linking tangential electric and magnetic field components in region 1. Q  is a (2x2) fixed matrix. Next, impose the 

two boundary conditions to obtain two vector integral equations with one from each condition; first, the tangential electric field vanishes on the patches surface and 

secondly, no electric surface current exists outside of the patches; 
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matrix equation ⋅ =B a 0  for the unknown current expansion coefficients a. The ijth element of the matrix B  is given by 
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and q are indices over the patch numbers. In order to get nontrivial solutions for a, we should have ( )det 0=B . The solutions of this determinantal equation are satisfied 

by complex frequencies 
r i

f f f= + i . The resonant frequency and the quality factor of the microstrip structure are 
r

f  and 2
r i

Q f f= , respectively. For transmission 

line problems, the dimensions of the conductors along the z direction are infinite. In this case, the determinantal equation is solved for the propagation wavenumbers [6]; 
the integral symbol in Bij is omitted. We use two sets of expansion basis functions; 1) the cavity mode sinusoidal functions without the edge condition [7] and 2) the 
Chebyshev polynomials with Maxwell weighting function [8]. The field components to the current distribution on the conductors, for ρ < ρ1, can be expressed in the 

following compact forms: 
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Sample numerical results 
To verify the validity of the present formulation, the effective dielectric constant of a cylindrical strip mounted inside a ground cylindrical surface is computed using the 
determinantal equation. The results are presented in Fig. 2 along with the available results [6]. There is a very good agreement between the two results. It is evident from 
Fig.2 that the proposed formalism is rigorous and accurate. The Bφ field component under the curved strip of an MTL versus the radial distance ρ (0<ρ<ρ2) at (φ,z)=(0,0) 
and f=200 MHz, is shown in Fig. 3. The parameters of the microstripline are [3] ρ2= 7.25, ρ3= 7.53, ρ4= 10.22, ρ5= 10.5 all in cm, ε2r=ε4r=1, ε3r=ε5r=2.9-0.0348i, w=6.4 
mm. The electrical characteristics of the phantom are varied from low dielectric/low conductivity (ε1r=2.3) to high dielectric/high conductivity (ε1r=57-54i). From our 
numerical simulations, we summarize the main results as follows: the B field variations with dimension and electrical characteristics of the sample are not very 
significant except when the load presents high permittivity/high conductivity and a dimension very close to the strip interface ρ =ρ2. At an arbitrary observation point 
within the structure, the field components along the z direction are not negligible and depend on the z coordinate variations. In this case, the quasi-TEM analysis can 
lead to inaccurate results. For a better analysis and design of multilayer MTLs, the full-wave methods are more rigorous and since they make few approximations. 
Conclusion 
An efficient full-wave moment method for the analysis of cylindrical multilayer multiconductor patch coil/MTL is presented. The model is validated for the single strip 
MTL structure by comparison with numerical data available from other studies. The numerical results concerning the multistrip MTL are under processing and will be 
reported later. The proposed method is intended to be an alternative to the quasi-TEM approach for the analysis/design of phased array microstrip coils. 
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Fig. 1. Cross section of the generalized M3PA/MTL. 
The dielectric layers (from the origin to the outer Fig. 2. The calculated 

reff
ε  as a function of k0ρ2. Fig. 3. Normalized |Bφ| versus the radial 

grounded cylinder) have radii ρ1, …, ρM-1, ρM, ρM+1,…ρP  distance ρ for various sample loads. 
and permittivities ε1r, …, εM-1r, εMr, εM+1r,…, εPr respectively. The conductors are located at the interface ρ = ρM. 
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