
Figure 1 - A 5x5 square mesh high-pass two-
dimensional ladder network.  The next-to-highest 
eigenvalue corresponds to a normal mode giving 
rise to B1 fields with good spatial homogeneity 
above the resonator plane. 

Figure 2 - Theoretical and exper-
imental eigenvalues for the 5x5 
inductively coupled planar array.  The 
eigenvalue for the (1,2)(2,1) doublet
(arrow) yields a mode suitable for 
quadrature operation that produces a B1 

field of high spatial homogeneity.  The 
frequency scale is normalized to the 
single element frequency ω =(LC)-1/2 ≡1. 
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Introduction:  Multi-element radiofrequency resonator designs are currently of interest for magnetic 
resonance imaging due to their superior sensitivity for anatomical structures near the surface of the body as 
well as their utility for parallel imaging applications.  In this abstract a solution is presented for the general 
problem of an inductively coupled two-dimensional resonator array in both the strong coupling "eigenmode" 
limit, and the weak coupling "phased array" limit.  It is demonstrated that in the strong coupling limit the 
array produces a high-frequency resonant mode that can be used to generate the traditional quadrature B1 field, 
and in the limit of weak or zero coupling reduces to the familiar phased array suitable for parallel imaging 
applications.  The theory is compared to experimental results from two prototype resonators operating at 128 
MHz.  The goal of this work was to gain an understanding of the underlying physics of these structures for 
applications to high-field MRI. 
 
Theory: The general problem of two-dimensional ladder network resonators has been shown to be closely 
related to the problem of a vibrating mechanical membrane with suitable boundary conditions.  The problem 
is most easily solved by writing down a recursion relation for Kirchhoff's voltage equations on the meshes of 
the structure of interest.  The dispersion relation for the eigenvalues yields the frequency spectrum, while the 
eigenfunctions represent the mesh current amplitudes.  From the eigenfunctions it is straightforward to 
calculate B1 maps.   
 
Low-pass two-dimensional ladder networks have been 
described previously, and offer a doubly degenerate 
homogeneous mode for circularly polarized magnetic resonance 
imaging applications (1).  However, higher field applications of 
these structures are limited by the fact that the eigenvalue of the 
most homogeneous normal mode is lowest in frequency.  The 
high-pass analog to the low-pass two-dimensional ladder 
network resonator is a collection of inductively coupled 
resonators as shown in Fig. 1.  Each element is represented by 

four conducting strips having a self inductance L, joined by a capacitor C at each corner.  The recursion relation for this 
structure can be written as 
 

 (ω L - 1/ωC ) Im,n - κ ω L (Im+1,n + Im,n+1 + Im-1,n + Im,n-1 ) - α ω L (Im+1,n+1 + Im-1,n+1 + Im-1,n-1 + Im+1,n-1 ) = 0 ,    [1] 
  
where the constants κ and α represent the coefficients of mutual inductance between nearest neighbors sharing a common 
leg and those on the diagonal respectively.  The Im,n are the current amplitudes in the m,nth element.  Trial eigenfunctions 
of the form Im,n (Ω,Γ) =  AΩ,Γ sin(mπΩ/(M+1))sin(nπΓ/(N+1)) yield the following dispersion relation: 
 

ω2= (LC)-1(1 - 2κ(cos(πΩ/(M+1) )+ cos(πΓ/(N+1) ) ) - 4α cos(πΩ/(M+1))cos(πΓ/(N+1) ) ) -1.             [2] 
 
Here Ω and Γ are the integral mode numbers and ultimately determine the 
homogeneity of the magnetic field produced by each of the eigenfunctions.  In 
the weak coupling limit κ and α approach zero, and each element operates 
independently at the frequency ω = (LC)-1/2 as expected.  In the strong coupling 
limit α and κ are non-negligible and the individual circuit elements combine to 
produce normal modes of oscillation.  In addition, the circuit as a whole exhibits a 
high-pass behavior in that the lowest mode numbers corresponding to the most 
homogeneous eigenfunctions appear at the highest frequencies.  The dispersion 
relation for the 5x5 resonator of Fig. 1 is shown in Fig. 2.  A total of 25 
resonances exist, including ten doublets and five singlets.  The general case of a 
resonator with NxN elements will yield N2 resonances with N(N-1)/2 doublets and 
N singlets.  The (1,2)(2,1) doublet, appearing at the next-to-highest frequency, is 
of particular interest for this work since it can be utilized for quadrature operation 
and has a B1 profile suitable for imaging.   
 
Methods and Results:  To test the above hypotheses, 5x5 mesh inductively 
coupled planar and head resonators were constructed for operation at 3 Tesla.  For 
the planar array, each element was tuned to a resonant frequency of 117.0 MHz 
and had dimensions of 8x8 cm with C = 40 pF.  Adhesive backed copper tape was 
used to form the elements on 1 mm thick Teflon substrates. The experimental 
eigenvalues are compared with the theoretical values in Fig. 2, and an image is 
presented in Fig. 3.  Outside of the five-fold degeneracy at the single element 
resonance frequency, all modes were identified.  A second array was then 

constructed on a hemispherical substrate 22 cm in diameter and 13 cm deep, and images of the superior aspect of the 
human brain as shown in Fig. 4 were obtained from the (1,2)(2,1) doublet operating in a quadrature transmit/receive mode. 
 
Conclusion:  An interesting point regarding the head array was that the (1,2)(2,1) doublet in the eigenmode limit 
occurred at a frequency more than 15% higher than the single element resonance, and was a strongly varying function of 
the coupling constant κ.  In addition, it is in principle straightforward to increase the operating frequency of this design 
by decreasing the size of the individual elements.  These properties may therefore be useful for high-field applications.  
Finally, since the zero coupling limit is rarely achieved in practice, the above theory should provide insight into operation 
of large phased arrays in general. 
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Figure 4 - Sagittal fast spin echo brain 
image obtained in quadrature with the 
inductively coupled head array at 3 
Tesla.  Imaging parameters were TR = 
2000 ms, TE = 69 ms, THK=3 mm, and 
ETL = 8.  The total scan time was 4:20.  

 

Figure 3 - Sagittal gradient echo 
head image obtained with the 
inductively coupled planar array 
at 3 Tesla.  Imaging parameters 
were TR = 75 ms, TE = 1.7 ms, 5 
mm slice thickness.  The total scan 
time for 21 slices was 30 seconds.  
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