Using Adiabatic Inversion Pulses to Suppress Long-T₂ Species in Ultra-short Echo Time (UTE) Imaging

P. E. Larson¹, J. M. Pauly¹, D. G. Nishimura¹, S. M. Conolly²

¹Electrical Engineering, Stanford University, Stanford, CA, United States, ²Bioengineering, University of California-Berkeley, Berkeley, CA, United States

Introduction:

Ultra-short echo time (UTE) imaging can visualize short- T_2 species that are normally invisible and has possible clinical applications [1-3]. Long- T_2 species will dominate the images unless they are suppressed. RF pulse methods of long- T_2 suppression have been used before [4], but they respond poorly to offresonance and variations in RF power. We have investigated the use of adiabatic pulses to better suppress long- T_2 species.

Theory and Methods:

When amplitude-modulated pulses have a long duration and low amplitude, short- T_2 species are unaffected by the pulse [4]. Similarly, adiabatic pulses of sufficiently low amplitude and narrow bandwidth will not excite short- T_2 species. To minimize short- T_2 attenuation, a near minimum amplitude should be used. This requires a long duration to maintain adiabaticity for long- T_2 species.

Experiments were performed on a GE Excite 1.5T system. Inverted images were acquired by using an inversion pulse followed immediately by a dephaser and then a half-pulse excitation.

Results:

Figure 1 shows the T_2 profile of two 10 ms adiabatic sech inversion pulses with parameters shown. T_{28} of a few hundred μ s are not inverted, while T_{28} near 100 ms are fully inverted. There is more short- T_2 attenuation during Inversion 2 because it has a wider bandwidth requiring a larger amplitude.

The figure 2 contour plots of M_Z show that RF amplitude variations of $\pm 20\%$ are tolerated by both inversion pulses, which is not true for amplitude-modulated pulses [5]. The wider bandwidth of Inversion 2 is shown.

Figure 3 shows phantom images using the Inversion 1 pulse. The short- T_2 phantom (0.35 ms) is unaffected by the pulse, the medium- T_2 phantoms (4 and 6 ms) have been nulled, and the long- T_2 phantoms (50 and 100 ms) are inverted. When the non-inverted and inverted images are combined, the long- T_2 phantoms are suppressed. The inverted image is also separated by phase into short (**3d**) and long (**3e**) T_2 images.

Discussion:

There are multiple possible techniques to remove $long-T_{2}s$ using adiabatic inversed images. The images can be separated based on their phase to produce short and long T_2 images, as shown in figure 3d,e. Combining an inverted and non-inverted image will suppress long- $T_{2}s$, as shown in figure 3c. Inverted water and inverted fat images can be combined for long- T_2 and fat suppression. These combination techniques are SNR efficient because both images have short- T_2 signal. Image subtraction using a later echo only contributes noise to short- T_2s .

Conclusion:

Long adiabatic inversion pulses of low amplitude and bandwidth do not invert short- T_2 species and can be used in UTE imaging to suppress long- T_2 species. They are particularly robust to RF variations and also have reasonable off-resonance bandwidths. They can

be used in multiple robust long-T₂ suppression techniques for UTE imaging.

References:

- [1] Gatehouse PD, et al, Clin Radiology 58: 1-19 (2003).
- [2] Chappell KE, et al, JMRI 18:709-713 (2003)
- [3] Robson, MD, et al, Clin Radiology 59:727-735, 2004.
- [4] Pauly JM, et al, Proc. 12th SMRM, p. 145 (1992).
- [5] Larson PEZ, et al, Proc 12th ISMRM, p. 2653, 2004.

Figure 1: Plot of remaining longitudinal magnetization vs. T_2 after 10 ms adiabatic sech inversion pulses. Inversion 2 has a larger bandwidth and amplitude.

phantoms are still visualized.