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Abstract Fluid-flow (FF) deformation algorithms have previously used a cost function that minimized differences in pixel intensity between images. An algorithm with 
such a cost function, however, can be applied only to images acquired from the same modality. To overcome this restriction, we propose a stochastic image deformation 
algorithm driven by a cost function that maximizes mutual information (MI) across images. 
 
Introduction An image deformation algorithm based on fluid dynamics was first proposed by [1]. In this algorithm, the images to be aligned were modeled as a viscous 
fluid; deformations were mathematically calculated with the Navier–Stokes partial differential equation (PDE) for fluid dynamics. The body force used to calculate 
deformations minimized differences in intensity between the subject (to be deformed) and reference (fixed) images. This algorithm, however, required that the 
registered images be of the same modality, obviously restricting applicability.  [2,3] formulates an MI-based algorithm in which the body force is derived from a joint 
histogram of the subject and reference images smoothed by the Parzen Window method. 
 
Method Our algorithm bypasses the intermediate step of a joint histogram: the body force is derived directly as a function of local image gradients, and then the various 
probability density functions and the entropy terms are estimated using a method based on Parzen Windows [4]. This stochastic formulation allows our algorithm to 
escape some local minima. Our algorithm successfully registers images with inverted pixel intensities, as well as images acquired from different modalities. In [1], the 
authors gave the Navier–Stokes partial differential equation (PDE) governing image deformation as:  
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where 2 T∇ = ∇ ∇  is the Laplacian operator, ( )v∇ ⋅  is the divergence operator, µ  and λ  are the viscosity constants, b(u) is the body force acting on the voxel at 
location u such that the pixel intensity differences across the images were minimized, and ( )v x t,  is the velocity of the particle at time t  and position x  in the Eulerian 
reference frame. In our algorithm, the body force b(u) was estimated to increase MI across the reference and deformed subject images:  
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where ijR  be the rotation matrix which rotates the deformation direction vector id  into jd , jT∇ is the image pixel intensity gradient of the image being deformed, 
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t , and is and it are N,  randomly-sampled points from the 

reference and subject images, respectively.  
 
Results Fig. 1 (a) and (b) show a set of synthetic 
reference and subject 3D images. The reference is 
a binary representation of a cube at the center of 
the image. The subject image is identical to the 
reference image except that it has an indentation 
on the bottom side, and with inverted pixel 
intensities. Three orthogonal sections of the 
images are shown. Fig. 1 (c) shows the final 
deformed subject image; Fig. 1 (d) shows the final 
estimated deformation field. While the pixel 
intensities of the corresponding regions are 
inverted in the reference and the subject images, 
the estimated deformation field is smooth and 
feasible. Fig. 2 (a) shows a real 3D MR image 
used as the reference image; Fig. 2 (b) shows a 
different 3D MR image used as the subject image 
with pixel intensities inverted. Fig. 2 (c) shows 
the final deformed subject image; Fig. 2 (d) shows 
the estimated deformation field.  
 
Discussion Our algorithm for FF deformation of 
images maximizes MI between images. We 
calculated the body force based on variations in 
MI for small changes in the deformation field. 
This body force is a function of the local image 
gradient directly derived from the images to be 
matched. Synthetic and real-subject trials verify 
that our algorithm reliably deforms images of 
different modalities; it also successfully deforms images when pixel intensities are inverted between the subject and the reference images. 
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  (a) Reference                            (b) Subject                     (c) Deformed Subject        (d) Deformation Field 
                                   Fig. 1. Synthetic Image with inverted pixel intensities. 

 
  (a) Reference                            (b) Subject                     (c) Deformed Subject        (d) Deformation Field 
                          Fig. 2 Matching different real subject MR Images with inverted pixel intensities 
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