3-D Tomographic Reconstruction of the Average Propagator from Diffusion-Weighted MR Data

V. Pickalov¹, P. J. Basser²

¹Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Novosibirsk, Russian Federation, ²NICHD/LIMB/STBB, NIH, Bethesda, MD, United States

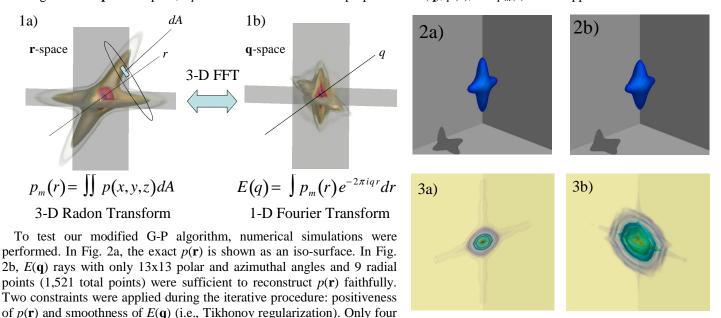
Introduction

The measurement of the 3-D "average propagator", $p(\mathbf{r})$, from diffusion-weighted (DW) NMR or MRI data has been a "holy grail" in materials science and biomedicine, as $p(\mathbf{r})$ provides detailed microstructural information, particularly about restriction. While Callaghan proposed a 3-D Fourier Transform relationship between $p(\mathbf{r})$ and the DW signal attenuation, $E(\mathbf{q})$ [1], using it to measure $p(\mathbf{r})$ from $E(\mathbf{q})$ data is not feasible biologically or clinically, owing to the staggering amount of DW data required.

To address this problem, we propose using computed tomography (CT) principles to reconstruct $p(\mathbf{r})$ from $E(\mathbf{q})$ data. Moreover, by employing information about known properties of $E(\mathbf{q})$ and $p(\mathbf{r})$, our CT reconstruction algorithms can be performed efficiently using many fewer DW $E(\mathbf{q})$ data points than conventional 3-D q-space MRI [1] or Diffusion Spectrum Imaging (DSI) [2] require.

Algorithm

As shown in Fig. 1, $E(\mathbf{q})$, measured along a ray in \mathbf{q} -space, q, is the 1-D Fourier Transform of $p_m(r)$, the marginal probability density function of $p(\mathbf{r})$, which is obtained by projecting $p(\mathbf{r})$ along the corresponding ray in (displacement) \mathbf{r} -space, r. CT reconstruction can then be used to estimate $p(\mathbf{r})$ from different projections, $p_m(r)$, by inverting the 3-D Radon Transform shown in Fig. 1. We propose using the Gerchberg and Papoulis (G-P) iterative procedure, originally developed for the 2-D [3] and 3-D ray transforms [4]. While iterating between \mathbf{q} - and \mathbf{r} -space, $a \ priori$ information about the properties of $E(\mathbf{q})$, $p(\mathbf{r})$, and $p_m(r)$ can be applied as constraints.



In Fig. 3a, we reconstructed $p(\mathbf{r})$ from one voxel of experimental DWI data obtained from excised spinal cord using 31 gradient directions, each with 16 radial points in **q**-space (496 total points). Fig.3b shows the full restoration of the real part of $E(\mathbf{q})$.

Discussion and Conclusion

iterations were required to reconstruct $p(\mathbf{r})$ with an RMS error = 22%.

In considering the novelty of this new approach, it is important to distinguish it from "tensor tomography" [5], in which the diffusion tensor field is reconstructed from DWI data by integrating signal intensities along rays within the imaging volume. Our CT reconstruction of $p(\mathbf{r})$ is performed using $E(\mathbf{q})$ data obtained within *each voxel*. Our approach also differs from q-ball MRI [6], which only reconstructs orientational features of $p(\mathbf{r})$ by using $E(\mathbf{q})$ data acquired on a sphere in **q**-space. We use $E(\mathbf{q})$ data obtained throughout **q**-space to reconstruct the *entire* average propagator, $p(\mathbf{r})$.

References

[1] P. T. Callaghan, Principles of nuclear magnetic resonance microscopy. Oxford: Oxford University Press, 1991.; [2] D. S. Tuch, R. M. Weiskoff, et al., "High Angular Resolution Diffusion Imaging of the Human Brain," *ISMRM*, Philadelphia, 321, 1999.; [3] M. Defrise and C. De Mol, "A regularized iterative algorithm for limited-angle inverse Radon transform," *Optica Acta*, vol. 30, pp. 403-408, 1983.; [4] V. A. Veretennikov, M. O. Koshevoi, et al., "Emission tomography of a micropinch discharge plasma," *Sov. J. Plasma Phys.*, vol. 18, pp. 131-132, 1992.; [5] G. T. Gullberg, D. G. Roy, et al., "Tensor tomography," *IEEE Transactions on Nuclear Science*, vol. 46, pp. 991-1000, 1999.; [6] D. S. Tuch, T. G. Reese, et al., "Diffusion MRI of complex neural architecture," *Neuron*, vol. 40, pp. 885-895, 2003.