
Figure 1:  3D fluoro-triggering shows 
sagittal, coronal, and axial full-volume 
MIPs at 2 s intervals during an 
thoracic/abdominal MRA exam.  A 
subset of these images reveals 
enhancement progressing from the right 
side of the heart, through the lungs, to 
the left side, and into the aorta before 
reaching the abdominal organs. 
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INTRODUCTION 
Real-time vascular MRI has been applied for both interventional guidance and fluoroscopic triggering of contrast-
enhanced MR angiography (CE-MRA).  3D real-time imaging [1] has been limited by acquisition and processing 
speed and thus 2D imaging has been the dominant mode.  We present a 3D real-time acquisition, reconstruction, 
and interactive visualization system capable of limited resolution, phased array scanning using only the unused 
processing resources of the manufacturer’s operator console host computer with no additional hardware.  As a first 
application, we have developed a 3D fluoroscopic imaging capability for CE-MRA.  With the conventional 2D 
fluoro-triggering currently provided on many platforms, the operator must prescribe an imaging volume and then 
interactively locate a 2D slice suitable for monitoring contrast arrival.   Our system requires no specification of a 
monitoring slab and is capable of providing real-time images throughout the duration of the acquisition.  It 
guarantees coverage of the areas of interest and may give advance notice of contrast arrival to ease breath-hold 
coaching.  Use of the 3DPR acquisition known as Vastly undersampled Isotropic Projection imaging (VIPR) allows 
monitoring to be performed over the actual imaging volume.  Our initial system imaged a 40x40x40 cm volume 
every 2 s using 8 coils with 0.25 s latency.   

MATERIALS AND METHODS 
We implemented our system on a General Electric 1.5T TwinSpeed system with EXCITE hardware.  The standard 
operator console workstation has dual 2.66 GHz Intel Xeon processors with 2 GB of RAM.  The GE Raw Data 
Server transmits data from the data acquisition hardware to the workstation through a TCP/IP connection.  We have 
developed a client that receives raw data and reconstructs limited resolution volume images.  These images are 
written to disk and can be interactively manipulated with hardware-rendered real-time multiplanar volume reformat 
MIPs.[2] The client runs as a background process, without interfering with normal operator interaction. 

Though VIPR’s time-resolved imaging capabilities generally make fluoro-triggering unnecessary, some patients are 
only capable of short breath-hold durations and some clinical pathologies lead to exceptionally delayed contrast 
arrival times, for example in aortic dissection, arterial occlusion with delayed filling from collaterals, or due to the 
valsalva maneuver during a breath-hold.  Fluoroscopic monitoring allows matching the breath-hold interval to the 
period when contrast is concentrated in the imaging volume.  Phased array VIPR provides sensitivity over the 
entire torso so contrast arrival can be monitored in the chest before initiating a breath-hold for abdominal imaging.  
The symmetric k-space acquisition allows the scan to be easily subdivided into 1-2 s interleaves, each with unique 
sets of projections.  For real-time monitoring, the interleaves are processed individually; while the set of interleaves 
acquired during the 30 s breath-hold is later reconstructed into high-resolution time-resolved vascular volumes.   

The real-time system uses a gridding-based algorithm similar to that in the conventional VIPR reconstruction.   
Radial lines are regridded as they are acquired onto a 64x64x64 Cartesian grid out to a radial k-space dimension of 
kr=24.  Four half echoes covering four unique radial lines are sampled during each 4.4 ms TR.  A calibration and 
correction algorithm is employed to reduce sensitivity to k-space location errors due to gradient delays and eddy 
currents.[3]  Processing is performed individually for each receiver and receiver magnitude volume images are 
combined to produce a final volume image at the completion of each 2 s acquisition interleave.   

The system was tested on phantoms and human volunteers.  The real-time reconstruction produces volume images 
with 9.2 mm isotropic spatial resolution.  Scanning was initiated when contrast was injected and breath-hold 
coaching began when enhancement was seen in the right heart, with a 30 s breath-hold beginning when contrast 
was in the aorta.  Subsequent interleaves during the breath-hold were processed individually with the real-time 
system and together with a conventional VIPR reconstruction, which generated a time series of volume with 1.7 
mm isotropic spatial resolution and 2 s temporal resolution over a 44 cm diameter spherical FOV.   

RESULTS AND DISCUSSION 
The sequence runs at a rate of 227 views/s - with an 8-receiver phased array coil, the data acquisition rate is 
5 MB/s.  For each 2 s time frame, the regridding process requires 300 ms to interpolate data into a Cartesian space. 
The regridding is scheduled continuously and finishes nearly immediately after acquisition, contributing minimally 
to the latency between acquisition and display.  The latency is thus due only to frame processing, which consists of 
a 3D FFT requiring 160 ms; receiver combination requiring 36 ms; chopping and normalization requiring a total of 
24 ms; and disk output requiring an additional 30 ms.  Each 2 s time frame is then displayed 250 ms after 
acquisition is complete.  Processing time is related almost linearly with the number of receiver coils. 

Spatial resolution is currently limited by the spatial frequencies that can be adequately sampled in a single time 
frame. The number of projections (and thus the supported resolution) can be improved by combining multiple 
frames with temporal filtering to exploit the variable sampling density of 3DPR.[4]  The acquisition interleaves 
frames can then be shortened, improving temporal resolution to our goal of 1 frame/second.   

CONCLUSIONS 
We have developed a real-time 3D MRI system that runs on standard hardware.  Our first application simplifies 
and improves performance of fluoroscopic monitoring for 3DMRA.  The system can easily be extended to a 
distributed computing implementation for higher performance.   
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