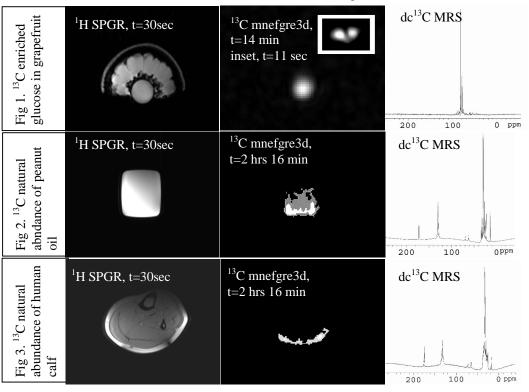
3-D Enhanced Fast Gradient Echo¹³C Carbon Imaging in a 1.5T Clinical Scanner

K. C. Harris¹, A. P. Lin², W. H. Perman³, P. Bhattacharya^{4,5}, D. P. Weitekamp⁴, B. D. Ross⁶

¹Huntington Medical Research Institute, Pasadena, California, United States, ²Rudi Schulte Research Institute, Pasadena, CA, United States, ³Saint Louis Univ. School of Medicine, St. Louis, MO, United States, ⁴California Institute of Technology, Pasadena, CA, United States, ⁵Huntington Medical Research Institutes, Pasadena, CA, United States, ⁶Huntington Medical Research Institute, Pasadena, CA, United States


Background: ¹³C natural abundance and post-enrichment by cell-specific ¹³C precursor has found widespread efficacy in animal and human research³ as well as clinical diagnosis⁴⁻⁷. PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) has theoretical SNR advantage up to 10,000 times. We are exploring the diagnostic potential of ¹³C PASADENA MRI and MRS^{1,2}. We recently developed PASADENA using ¹H MRI detection^{1,2}, as no ¹³C MRI sequence was available on our clinical 1.5T (GE LX) scanner. In this abstract we describe the development of a ¹³C MRI sequence suitable for real-time ¹³C PASADENA metabolite imaging *in vivo*.

Methods: EPIC source code (GE Healthcare, Waukesha, WI) of 3D enhanced fast gradient echo (efgre3d), successfully employed by one of us⁸, was altered to allow capability for multi-nuclear image acquisition and reconstruction of 100% peanut oil, a grapefruit, and two ¹³C glucose solutions (A=0.3 molar 1-¹³C in 25 ml; B=7 molar 1-¹³C in 50 ml). Biological confirmation was performed on *in vivo* human calf of normal volunteers. All studies were conducted in a GE 1.5T LX 9.1 MR scanner, using a custom ¹H-¹³C head coil³ and

stand-alone proton decoupler $(GE, Fremont, CA)^5$.

Results:

The sequence was tested in vitro (Fig 1) using ¹H MRI (left), ¹³C MRI (middle), and ¹³C MRS (right). Natural abundance (1%) of peanut oil (Fig 2) and of human calf lipid (Fig 3), determined by ¹³C MRS to 64 mmols of ¹³C, achieved excellent ¹³C images in longer exam times. Assuming in vivo PASADENA theoretical signal enhancements of 20,000 (PB, DPW, BDR unpublished) 1000 or (experimental observation by PB, DPW. BDR unpublished), together with the known fractional enrichment of target metabolites⁶ intracerebral between 5-20% for ¹³C, and the SNR observed here in ¹³C phantoms and in vivo we can perform comparable or higher

resolved PASADENA metabolite MRI in less than 5 seconds.

Conclusion: The current sensitivity of a clinical 1.5T scanner is sufficient to perform *in vivo* ¹³C PASADENA imaging and spectroscopy during the anticipated physiological brain delivery of hyperpolarized ¹³C reagents.

Acknowledgements: The authors would like to thank NARSAD (KH), James G. Boswell Fellowship (PB), and Rudi Shulte Research Institute (APL, DPW, BDR) for their generous funding of this project.

References:

- 1) Bhattacharya P.; Weitekamp D.P.; Harris K.; Lin A.P.; Ross B.D. ESMRMB Annual Meeting, 2004.
- 2) Tran T.; Bhattacharya P.; Harris K.; Lin A.P.; Ross B.D. Annual SCMR Scientific Sessions, 2005, accepted.
- 3) Cerdan S. NMR Biomed. 2003 Oct-Nov;16(6-7):301-2.
- 4) Bluml, S., et al., NMR Biomed, 2002. 15(1): p. 1-5.
- 5) Harris, K., et al. ISMRM. 2004.
- 6) Lin, A.P., et al., Magma, 2003. 16(1): p. 29-42.
- 7) Ross, B., et al., NMR Biomed, 2003. 16(6-7): p. 358-69.
- 8) Perman WH, Radiology. 1986 Sep;160(3):811-20.