
Comparison of Similarity Measures for Driving Diffusion Tensor Registration 
 

K. M. Curran1, D. C. Alexander1 
1Computer Science, UCL, Gower Street, London, United Kingdom 

Introduction 
In order to obtain the best possible match between two diffusion tensor (DT) images, it is important to use an appropriate similarity measure to drive the image 
registration. A numerical measure of similarity is obtained by comparing the data values at corresponding image locations. For scalar images the simplest approach is to 
use the difference in scalar intensity at corresponding image locations but many others have been proposed that generally produce better results [1]. In the case of DT 
image matching, a comparative measure of similarity between diffusion tensors is required to drive the registration. Many diffusion tensor similarity measures have 
been proposed including those that generalise existing scalar measures and those defined specifically for DT images [2]. Alexander et al [3] propose a number of 
similarity measures for driving DT elastic registration. However, their registration algorithm does not include tensor reorientation in the optimisation and therefore do 
not match orientations. The simplest kinds of comparisons we can make between DTs are by looking at the difference in modulus (D) or relative anisotropy νr : 

δ1(D1,D2) = −Tr(D1) /3−Tr(D2) /3  or δ2(D1,D2) = −ν r(D1 ) −ν r(D2)  . Similarity measures based on these derived scalar indices do not use the orientational information that is 

contained in a tensor. We can derive several measures from the full tensor matrix that include orientational information. The tensor difference δ3 is a Euclidean measure 
between the nine corresponding elements of the two DTs.  For two DTs, D1 and D2, δ3(D1 ,D2) = (D1 − D2) : (D1 − D2) , where the tensor scalar product D1 : D2 = Tr(D1 

D2). The tensor difference is sensitive to differences in size, shape and orientation of the two tensors [3] and has proved effective for DT image matching in previous 
work [3, 4]. It can be normalised, in order to emphasise differences in shape and orientation, in the following way: δ4 (D1 ,D2) = (D1 − D2) : (D1 − D2) Tr(D1 )Tr(D2) . The 

principal direction difference δ5 compares the angular separation [4] of the principal DT eigenvectors δ5(D1 ,D2) = ν1ν 2( )−1
ν1ν 2 × cos−1 e1 ⋅ e2( ) where ν1 and ν2 are the 

anisotropies of the two DTs and e1 and e2 are their principal eigenvectors. We use a measure of prolateness [5] for ν defined by: ν = (Tr(D2))-1/2(λ1-λ2) where λ1 > λ2 > 
λ3 are the eigenvalues of the DT. Since the motivation of this work is to determine the best DT similarity measure to drive image registration, it is important to avoid 
local minima traps. Spurious optima at local minima will not demonstrate the full power of a particular similarity measure. 
 

Methods 
In this paper we limit investigation to affine transformations, although the methods we describe can be extended easily to other transformation groups. We sum the 
voxelwise similarity over the overlapped foreground regions of the transformed source and target images and normalise by the size of the overlap. We consider only an 
eighth of the voxels (32 x 32 x 42) in order to reduce computation times. We use the Preservation of Principal Direction (PPD) [4] reorientation strategy to compute the 
transformed source image. In an attempt to find the global minimum, we combine a fast local optimization, Powell’s method [6], with a global optimisation technique, 
Simulated Annealing [6]. We use simulated annealing to optimize the starting point  for Powell’s method. We call the combined method gradient annealing [7]. It does 
not guarantee to find the global minimum but if the function has many near optimal solutions it should find one. We register three DT-MR  brain images (128 x 128 x 
42) to a fourth template image and compare the Euclidean distance of fifty-two corresponding landmarks in the warped source and target images for similarity measures 
δ1, δ2, δ3, δ4 and δ5. 
 

Results 
In figures A & B, we show the modulus and anisotropy maps in one slice of a source and target volumetric DT-MRI brain image. Figures C-G illustrate the registration 
results for the five similarity measures. The warped source (red), trace and anisotropy maps, are overlaid on the target maps (green). Comparing the results of the two 
scalar derived similarity measures, relative anisotropy difference δ1 (Figure C) and modulus difference δ2 (Figure D) shows that δ1 finds a better match than δ2 for all 
three registrations. Interestingly, the similarity measures that are sensitive to size, shape and orientation (Figures E-G) do not find as good a match as δ1. However, 
Figures E and G illustrate that qualitatively the tensor difference δ3 and principal  direction δ5 similarity measures are similar to δ1. However, normalising the tensor 
difference δ4 (Figure F) to emphasise differences in shape and orientation is not advantageous.  
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To compare the similarity measures quantitatively we calculated the Euclidean distance between fifty-two corresponding landmarks in the warped source and target 
images. The mean Euclidean distance for the five similarity measures were 310mm, 353mm, 314mm, 334mm and 341mm, respectively. This suggests that the relative 
anisotropy  difference δ1 results in the best image match. The tensor difference δ3 does not perform as well as δ1 despite the additional orientational information it 
exploits to guide the DT-MR image registration. 
 

Discussion & Future Work 
In this paper we present a comparison of diffusion tensor similarity measures. We would have expected to need similarity measures that are sensitive to all aspects of 
the diffusion tensor including the size, shape and orientation to exploit the information in DT-MRI fully but these results suggest that δ1, the scalar derived measure, 
finds the best image match. However, in one of the three registrations, δ3 found a better match than δ1. Previous work [7] has demonstrated the importance of finding the 
global minimum. Although the gradient annealing method attempts to find the global minimum, it is still possible to get stuck in minima close to the global minima. It 
would be interesting to repeat the experiment with a slower cooling schedule for a larger number of data sets and for higher-order transformations.  
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