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Introduction 
Methods to reconstruct nerve fibre tracks in brain and spinal cord using diffusion weighted MRI are now widespread. Such methods allow connectivity to be assessed 
in subjects in a non-invasive way. This has particular utility in human imaging where invasive studies are not possible. Current techniques make assumptions regarding 
fibre heterogeneity within the voxel being imaged which are overly simplistic in some areas of the brain. A diffusion tensor model of the diffusion profile within a 
voxel, which only allows for a single nerve fibre orientation, is frequently used. This will produce results inconsistent with the underlying anatomy in regions where 
fibres cross[2]. An algorithm is applied to the problem of tractography which is capable of inferring Probability density functions (PDFs) of the orientations of one or 
two intra-voxel fibre bundles based on each model’s relative probability of describing the data. 

Algorithm 
A Monte Carlo Markov chain Bayesian inference method was used to analyse multi-directional 
diffusion  weighted MRI images[1,3]. Such techniques allow us to draw samples from the 
probability distribution P(Model paramater|Data,Model). Hence if we have a model which 
attempts to describe a data-set we can calculate the probability distribution of the model 
paramaters given the measured data if we make the assumption that the model is correct. We 
constructed a model for the signal due to diffusion within the imaged voxels population of 
nerve fibres for a constant b-value. The equation for N distinct fibres and an isotropically 
diffusing component can be calculated using equation (1), where each fibre has a partial 
volume fraction fi, and vi is the ith fibre’s orientation, and the ith fibre’s diffusion tensor has two 
degenerate eigenvalues Dperp,i and a major eigenvalue Dpara,i. Equation (1) can be rewritten as 
equation (2), where Si and Siso are given by equations (3) and (4) respectively. For a constant b-
value Si  and Siso will be invariant, so by fixing the b-value we clearly reduce the number of 
paramaters we need to fit for. 
A Markov Chain Monte Carlo Method was implemented in C++ to calculate PDFs for the 
parameters  Si,Siso, ∆λ i and vi from the diffusion weighted data set.  The data was fitted using 
both one and two fibre models. Once the PDFs have been fitted for we can evaluate which 
model is the more appropriate for the voxel being analyzed. To assess the quality of a model its 
parameters were sampled from P(X|Data,Model) using the Markov chain where X is the vector 
of model parameters. The parameter Ψmodel (representing the average probability of the data 
given the model and its inferred parameters) was calculated according to equation (5) (where Xj is the jth sample of X sampled from the Markov chain and M is the 
number of Markov chain samples) using the well known Rician distribution for noise in MRI images[4]. For a large enough number of samples Ψmodel can be 
represented by equation (6). The parameter Φ given by equation (7) was then calculated to assess which model was most appropriate. With Bayesian inference 
problems we can incorporate the prior probabilities of our model parameters into the fitting. We used this capability to incorporate neighbourhood information to 
regularize our distribution of fibre orientations by making low deviations between the orientations of neighbouring voxels more likely subject to a curvature constraint. 

Data 
Diffusion datasets were 
acquired on a Bruker 
Medspec S300 3T 
system. 63 diffusion 
directions were 
acquired with b=1000 
mm2/s. A diffusion 
weighted gradient 
duration, of δ=27.5ms 
and evolution delay of 
∆=40ms was used. The 
images were 
coregistered to remove 
motion and eddy 
current artifacts. It 
should be noted that in 
the analysis of the data 
that no b=0 mm2/sec 

images were used, as this is not necessary for characterising the direction of diffusional anisotropy. The images were reconstructed to a matrix size of 128x128 from an 
EPI matrix size of 100x100 for 63 slices. This gave a voxel dimension of 1.56mm x 1.56 mm x 2mm. 

Results 
Figure 1 comprises three monochrome intensity images combined on the red, green and blue colour channels. The green channel corresponds to the value of Siso from a 
two fibre model and the blue channel corresponds to the value of So from fitting the one fibre mode, and the red channel denotes regions of high Φ which correspond to 
a high likelihood of having a double fibre architecture. Figure 2 shows the directions sampled from the PDF of the one or two fibre model depending upon which the 
algorithm has determined to be the most plausible by thresholding the value of  Φ to correspond to a two fibre model if greater than 13 (such voxels are represented 
using green vectors).  Figure 3 shows the same voxels but sampled whilst incorporating neighbourhood information to regularize the directions. It can be seen that this 
results in tighter PDFs. 
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