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Introduction: In dynamic susceptibility contrast MRI (DSC-MRI), cerebral blood flow (CBF) is calculated by inverting the equation C(t)=CBF.AIF(t) ⊗ R(t), where 
AIF(t) is the measured arterial input function, C(t) is the measured tissue concentration, and R(t) is the unknown tissue residue function. This is an ill-posed problem 
because of discrete sampling and the presence of noise. We have shown previously that in the presence of bolus delay and/or dispersion, the standard method of 
inversion, Singular Valued Decomposition (SVD) [1], poorly characterizes R(t) and significantly underestimates CBF [2,3]. An alternative method is needed in cases 
where the shape of R(t) is of interest, e.g. to assess delay, dispersion, or to calculate flow heterogeneity [4]. Among those proposed, Tikhonov regularization can 
accurately determine R(t) when the bolus is dispersed but has no delay [3]. Circular SVD [5] provides delay insensitive CBF measurements, but the shape of R(t) is still 
poor. The iterative method of maximum likelihood-expectation maximisation (ML-EM) can also reconstruct R(t) when delays are present [6]. However, the optimum 
number of iterations depends on the shape of the function being recovered. This work describes a multistage approach, introducing a modification of the ML-EM 
method that uses a point-wise stopping criterion for the iterations, enabling the accurate reconstruction of a delayed and/or dispersed R(t), and preventing corruption due 
to amplification of noise. The methodology was assessed using Monte Carlo simulations. 
 
Methods: The ML-EM method iteratively adjusts an estimate of R(t), to maximise the likelihood of measuring the observed C(t), given AIF(t), R(t) and noise [6]. 
Sampling at TR necessitates the discretisation of the convolution integral with the matrix A. Østergaard minimised discretisation errors by using a matrix A1, which 
assumes both the measured AIF and recovered R vary linearly between time points [1]. The assumption of linearity in R can be considered inappropriate for the 
discontinuity arising from a delayed but undispersed bolus. We therefore also considered the matrix A2, which only assumes linearity in AIF. Since in real data the 
presence/absence of delay and dispersion is unknown, a multistage approach to the reconstruction was adopted. In the first stage, standard ML-EM reconstructions are 
performed using both matrices (A1 and A2). The appropriate matrix is selected with automated empirically determined criteria for the final reconstruction, which uses a 
modified ML-EM method for optimum shape characterisation. The modified algorithm is initiated with a uniform guess for R. Low spatial frequencies are recovered in 
the first few iterations. Further iteration reconstructs the more slowly converging higher frequency components, but inevitably, noise begins to deteriorate R. The 
optimum point to stop is highly dependent on the unknown shape of R and also on the SNR: fewer iterations are required to optimally characterise a noisy dispersed 
function than a delayed but undispersed function. In this work we propose a point-wise stopping rule that prevents deterioration due to noise whilst still extracting the 
high frequency information associated with R itself. The stopping criterion is based on the individual convergence of each point in R. Points that characterise the low 
frequency components are recovered first and are then kept at these values until all points in R have converged. An automatic convergence condition was empirically 
determined in terms of the position, j and value rj

 (n) of the point, the area under R(n), and the convergence of surrounding points.  
 
The methodology was tested on simulated and on patient data. For the simulations, AIF was modelled as a gamma-variate function with recirculation [1], and R(t) as the 
dispersed exponential R(t-t0)=[exp(-(t-t0)/b)-exp(-(t-t0)/MTT)]/((b/MTT)-1), for delays t0 and dispersions b, where MTT is the mean transit time. Tissue curves were 
simulated for a range of CBF, MTT, TR, SNR, t0, b, and sampling times. 100 different noisy tissue curves were generated for each parameter combination and the 
means and standard deviations for the recovered R were evaluated. The patient data were acquired on a 1.5T Siemens Symphony scanner using a GE-EPI sequence 
(TE/TR=47/1500ms) after injecting 0.15mmol/kg of Gd-DPTA. To assess the effect of SNR, denoising was performed using independent component analysis (ICA)  
[7].  This improves the SNR (=σS0/S0) of our data from 50 to 500. For both simulated and real data, the CBF and delay were estimated and compared with those 
obtained using a standard (single stage unconstrained) ML-EM of 200 iterations [8].  
 
Results: The proposed method enables the reconstruction of many different residue function shapes by 
minimising the risk of over/under iteration of different parts of the function. The standard deviation of the 
individual recovered points of R is reduced compared with standard ML-EM, especially at lower SNR, and 
individual residue functions are smoother. Figure 1 shows the simulated and a typical recovered R(t) for 
CBF=60 ml/100g/min, MTT=4s, t0=2s and b=0s with tissue SNR=50. Between 100 and 200 iterations are 
required to characterise the sharp rise to maximum of a delayed exponential function, whereas fewer than 50 
iterations are needed for the convergence of the tail points. The method is robust across the tested CBF range. 
Even for short MTT, a TR of less than 1.5s avoids the CBF underestimation usually observed with other 
algorithms [1], although in these cases, for a delayed and non dispersed bolus, it is difficult to reconstruct the 
true maximum of R(t) (because of the very high frequencies involved). In general, however, the function-
dependent convergence criteria enable robust and accurate shape characterisation for SNRs greater than 
around 50 and sampling time greater than around 50 seconds.  
 
Figure 2 illustrates the results found for in vivo data from a patient with middle cerebral artery (MCA) 
stenosis. The CBF map was created using ICA denoised data with an AIF measured in the contra-lateral 
MCA. Pixels are classified as dispersed (highlighted yellow) or undispersed (no colouring) according to the 
choice of matrix A made in the first stage of the reconstruction. For comparison, figure 3 shows a map of the 
time-to-peak for the local AIF [7] (an alternative method for estimating bolus dispersion). Pixels classified as 
dispersed measure low CBF, and broadly correspond to those pixels with late time-to-peaks.  
  
Discussion: A new deconvolution method, based on a modified ML-EM approach is described. The 
appropriate choice of convolution matrix and point-wise stopping criteria for the ML-EM reconstruction 
improves the characterisation of the residue function. Iteration of the tail points in R(t) is stopped before the 
points defining the maxima and rise to maxima. As a result sharper residues are reconstructed with more 
iterations, and noise fitting is minimised. This was demonstrated with both simulated and patient data. In addition to accurate residue function characterisation, maps 
indicating the presence of delay and/or dispersion can be created from the patient data. Since the presence of delay and dispersion introduce bias in CBF, these maps 
could be used to indicate the reliability of the CBF estimates and could help improve tissue classification models.  
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