Robust Long-T₂ Suppression Pulses

P. E. Larson¹, D. G. Nishimura¹

¹Electrical Engineering, Stanford University, Stanford, CA, United States

Introduction:

Ultra-short echo time (UTE) imaging has recently become of interest for its possible clinical applications [1,2]. Without long T_2 suppression, UTE images will be dominated by the long T_2 components. This abstract compares various approaches to long T_2 suppression based on low-amplitude composite RF pulses. This was originally approached by applying a low amplitude 90° RF pulse that allows short T_2 species to recover over its duration [3]. The low amplitude of this pulse makes it very volatile to B_1 inhomogeneities. Image subtraction using multiple echo times has also been used to remove long T2 species [4], although an RF suppression technique is desirable to reduce scan times and motion artifacts.

Theory/Methods:

The pulses compared here are based primarily on composite pulses used originally in NMR [5]. The desired end result is a 90° tip angle for only long T_2 species that will be followed by a dephaser. These pulses must have very low amplitude so that short T_2 species will not be affected by the pulse.

The first pulse is a variation of a 90₀-90₉₀-[6] where a z-gradient crusher is applied between the two pulses to improve the off-resonance performance. pulse uses the crusher to return all spins to the M_z axis before applying the second pulse. The second composite pulse is a 90₀-180₂₂₅-90₀, a symettrized version of the 90₀-90₉₀ that provides a larger B₀ bandwidth [7]. A 180_{97,2}-360_{291,5}--180_{97,2}-90₀ composite pulse is also included in this comparison because it is even more resistant to B₁ variations [5,8]. Composite pulses with more pulse elements will require significantly longer pulse times to achieve reasonable T₂ profiles.

Results:

Each of the RF pulses was simulated using the Runge-Katta algorithm to solve the Bloch equation, neglecting T_1 decay. The pulses are compared based on pulse length, long T_2 suppression, B_0 bandwidth, and robustness to B_1 variation. The long 90_{0° RF pulse is included for comparison. Table 1 shows a summary of these properties for each of the different pulses, where the pulse lengths are such that the RF amplitude is constant over the duration. Figure 1 shows how much longitudinal magnetization (M_Z) remains for various T_2 . The mesh plots in figure 2 show the remaining longitudinal magnetization for $T_2 = 100$ ms, plotted vs. B_0 and B_1 variations.

For all of these pulses, shortening the pulse length will reduce the T_2 cutoff but enhance the B_0 bandwidth. Depending on the desired T_2 species to be imaged, a tradeoff can be made here.

The $90_{0^{\circ}}$ - $90_{90^{\circ}}$ is presented in Table 1 for comparison, but for most applications its B_0 bandwidth is much too small. It obtains a factor of 3 improvement in B_1 robustness at the expense of a factor of 4 in pulse length.

The 90_0 -crusher- 90_{90° also requires approximately 4 times the pulse length of the 90_0 to obtain a similar T_2 profile, and is 3 times more robust to B_1 variations. It has a similar B_0 bandwidth to the 90_0 pulse, which is a significant improvement over the 90_0 - 90_{90} . The crusher was assumed to be ideal in the simulation, but this should not change the performance significantly. A pattern of 90-crusher's could also be repeated multiple times for increased B_1 robustness as long as the dephasers do not introduce any coherent echoes.

The 90_{0} -180₂₂₅-90₀ pulse requires 16 times the pulse length to achieve a similar T₂ profile to the 90_{0} . The significant pulse length leads to a small B₀ bandwidth, but this pulse offers an alternative to using a crusher.

The $180_{97,2}$ - $360_{291,5}$ - $180_{97,2}$ - 90_0 pulse is especially robust to B₁ variations, but it is only able to achieve the same T₂ profile as the other pulses with a length of nearly 400 ms. The pulse length of 90 ms presented is a compromise that achieves a reasonable T₂ cutoff for UTE imaging, has a moderate B₀ bandwidth, and is the most robust of the pulses to B₁ variations.

Discussion:

Each one of the RF pulses presented is a significant improvement in B₁ robustness over the long 90_0 . Of these pulses, the 90_0 -crusher- 90_{90} has the best bandwidth and shortest pulse

time, while the 90_{0} - 180_{225} - 90_{0} ° and the $180_{97,2}$ - $360_{291,5}$ - $180_{97,2}$ - 90_{0} ° perform better with B₁ variations. In terms of T₂ cutoff and B₀ bandwidth, these two pulses are comparable except that the $180_{97,2}$ - $360_{291,5}$ - $180_{97,2}$ - 90_{0} ° require a significantly longer pulse length. Investigation will continue into other pulses, including frequency modulated pulses, while beginning phantom and in-vivo testing.

Pulse	Length (ms)	$T_2 cutoff (ms)^*$	B_0 bandwidth (Hz) **	B ₁ robustness***
90 _{0°}	5	6.7	[-50.4, 50.4]	[309, .309]
90 _{0°} -90 _{90°}	20	4.5	[-2.8, 2.8]	[.0955, .0995]
$90_{0^{\circ}}$ -crusher- $90_{90^{\circ}}$	21	4.5	[-40.5, 40.5]	[.0955, .0995]
90 _{0°} -180 _{225°} -90 _{0°}	80	3.9	[-3.1, 3.1]	[.0807, .0807]
$180_{97.2^{\circ}}360_{291.5^{\circ}}180_{97.2^{\circ}}90_{0^{\circ}}$	90	1.07	[-27.5, 14.3]	[.0213, .0213]

Table 1 - Summary of various long T2 suppression pulse parameters

* T_2 at which 20% of initial M_Z remains. ** Frequencies at 1.5T between which less than 20% of initial M_Z remains. *** M_Z values for RF powers of [120%, 80%], neglecting T_2 decay.

References:

- [1] Gatehouse PD, et al, Clin Radiology 58: 1-19 (2003).
- [2] Chappell KE, et al, JMRI 18:709-713 (2003).
- [3] Pauly JM, et al, Proc. 12th SMRM, p. 145 (1992).
- [4] Nayak KS, et al, Proc. 8th ISMRM, p. 509 (2000).
- [5] Levitt MH, "Composite Pulses", Encyclopedia of Nuclear
- Magnetic Resonance Wiley 1996, p. 1396-1410.
- [6] Freeman R, et al, JMR, 38:453 (1980).
- [7] Garwood M, et al, JMR 94: 511-525 (1991).
- [8] Wimperis S, JMR A 109:221 (1994).