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Introduction: Projections onto convex set (POCS) formalism presents a powerful mathematical apparatus for solving many reconstruction problems that entail 
incomplete and inconsistent data. Recently, POCS formalism has been adopted for reconstruction of sensitivity encoded MRI data in fast and efficient iterative 
POCSENSE procedure [1, 2]. POCSENSE allows simple and computationally efficient inclusion of many nonlinear constraints (i.e., phase constraint [3]) in image 
reconstruction to improve image quality or to achieve high degrees of data acquisition speedup. However, the application of the original POCSENSE was previously 
limited to the Cartesian k-space sampling. In this work, we propose extension of POCSENSE technique that is able to handle data sampled on arbitrary trajectories. 

Theory: The iteration of POCSENSE technique includes several projections onto data and additional convex sets (see Algorithm). Here, si – coil sensitivities, i=1…NC, 
and * denotes complex conjugation. Projection onto data set is 
accomplished by resetting the k-space samples at the trajectory 
positions to the original values. The reconstruction is 
accomplished on a Cartesian grid to make use of the fast Fourier 
transform algorithm (FFT). Hence, the projection is 
straightforward, if the original trajectory coincides with the 
Cartesian grid points. However, in POCS algorithms, which deal 
with data sampled at arbitrary positions, this projection operation 
gets more complicated [4]. Let r and k denote image space and k-
space coordinates respectively, K - the set of sampled positions, 

mi,0(k) – data acquired by the i-th coil at k∈K, mi,c(k) - k-space values for the i-th coil image on the current iteration, i=1, …NC. Then, the data projection step for the i-th 
coil to be used with arbitrary trajectories is defined as follows: 
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Here, GAC and GCA are interpolation operations transferring the data from the original trajectory to a 
Cartesian grid and vice versa, and F and F-1 are forward and inverse FFTs respectively. In order to update 
the k-space values, the current Cartesian k-space estimate is first regridded to the original trajectory. Then, 
the difference between acquired and updated values is taken to produce a set of error measurements. 
Finally, the error is transferred back to Cartesian grid and used to correct the k-space values. 

Methods: We utilized standard gridding with a Kernel-Bessel kernel [5] to implement interpolation 
operations, and Pipe’s method [6] to find sampling density compensation function. Our implementation of 
Eq. (1) is depicted in Fig. 1. The parameters of the kernel were chosen as L=3, B=14.1372, and the 
overgridding parameter was taken equal to 2. The phantom data were obtained using a standard GE spiral 
scan (18 interleaves, 2048 points per interleave, image matrix 192-by-192) on 1.5T GE SIGNA MR 
scanner (GE Medical Systems, Milwaukee, WI), equipped with a custom-built four-element (Nc=4) 
bilateral temporal lobe phased array coil. The reduced dataset was produced taking every second interleave 
of the full dataset. The sensitivity maps were estimated by smoothing the reference images obtained from 
the full dataset and normalized by sum-of-squares image. 

Results: Figure 2 shows results of reconstruction of spiral data from phantom scan. The image 
reconstructed from the original data contains significant aliasing artifacts (Fig. 2a). In the image 
reconstructed by non-Cartesian POCSENSE, the artifacts are eliminated to a negligible level (Fig. 2b). For 
comparison, the reference image was produced by regridding the full spiral dataset (Fig. 2c). 

Discussion: We developed a new POCSENSE technique that could handle sensitivity encoded data 
sampled on arbitrary trajectories. The new technique makes available benefits of POCS formalism to a 
wide range of k-space acquisition approaches. The new algorithm is computationally and memory efficient 
compared to the reconstruction methods based on the direct matrix inversion. For many trajectories such as 
radial, the k-space center is often oversampled. In this case, it is possible to accurately interpolate all 
Cartesian grid points in the area. Then, hybrid approach may be employed that combines traditional data 
projection for k-space center and the new method for the outer, undersampled regions. This promises to 
significantly decrease the complexity associated with gridding part of the method. The implementation of 
POCS iteration described here could be used in other POCS-based reconstructions of non-Cartesian data, 
i.e. partial k-space reconstruction for variable-density spirals [7]. 
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Figure 2. Reconstruction of spiral data using non-
Cartesian POCSENSE. Undersampled image (a) was 
obtained from full spiral dataset (c) by taking every 
second interleave. Image after 9 iterations of non- 
Cartesian POCSENSE is shown in (b). The reconstructed 
image is characterized by minimized residual aliasing 
artifact and improved resolution. At the same time, the 
noise level is higher then in the full image (c) that is 
common for any method of reconstruction of reduced 
datasets.  
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Algorithm. POCSENSE (non-accelerated version). 
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Figure 1. Implementation of data projection operator using 
gridding interpolation. Here, C(k) is k-space convolution 
kernel, c(r) – its image space counterpart. Sampling density 
compensation is accomplished before each convolution 
operation. 

Proc. Intl. Soc. Mag. Reson. Med. 11 (2004) 2648


	Return to Main Menu
	=================
	2004 Program
	=================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD



