A method for interleave measurements of ¹H, ¹H-{¹³C}, and ³¹P spectra from the same localized area at 4.7T wholebody system

F. Mitsumori¹, N. Takaya¹, H. Watanabe¹

¹Natl. Inst. Environmental Studies, Tsukuba, Ibaraki, Japan

Introduction

Multinuclear MRS gives variety of information on the metabolic status in the localized region of human brain from different windows. However, techniques for obtaining multinuclear localized spectra in a measurement with single setting have not yet been exploited so far. Major difficulty to accomplish the multinuclear MRS was originated from the low sensitivity in the low gamma nuclei. On this point an increase in S/N at high field is beneficial. We reported a method for interleave measurements of ¹H and ³¹P spectra from 3x3x3 cm³ region in the human brain at 4.7T last year [1]. We extended the method to three nuclei of ¹H, ¹³C, and ³¹P by adding up a technique of editing the ¹H spectrum by ¹³C to which ¹H is directly connected.

Methods

Three transmission and four reception channels were equipped with a 4.7 T Inova wholebody spectrometer (Varian, Palo Alto). We built a probe consisted from tree surface coils, two of which tuned for quadrature ³¹P (8 cm in diameter), and one for ¹³C (12 cm in diameter). The surface coil probe was successfully integrated with a ¹H TEM probe for head to allow triple nuclei measurements. The basic pulse sequence was a combined sequence of STEAM for ¹H and ISIS for ³¹P used for the double nuclei measurement [1]. On the STEAM part we implemented an adiabatic ¹³C 180 degree pulse during TM period for inverting *IzSz* state to edit ¹H spectrum [2]. A 25ms hyperbolic secant pulse gave effective inversion over 6kHz. TE for STEAM was adjusted to 7.7ms targeting the ¹H *sp3*-bonded to ¹³C. Broadband decoupling of ¹³C could be performed by applying ¹³C MLEV pulses during data acquisition for ¹H [2]. Inversion of ¹³C was performed in the alternate scan for ¹H, and the measurements of ¹H and ³¹P were kept interleaved. Thus, ¹H, ³¹P, ¹H (¹³C inverted), and ³¹P spectra were successively obtained in one cycle of the sequence. A twice measurement in ³¹P was useful to compensate the low sensitivity in ³¹P. We named the method as TRINITY (TRIple Nuclei Interleave in Trilple channel spectroscopY).

Results and Discussion

Performance of the TRINITY method was tested using a spherical phantom (4cm in diameter) containing 50mM acetate, 50mM glutamate, 100mM ATP, 100mM MgCl₂, and 5mM EDTA placed in 1L saline. Fig. 1 exhibits ¹H, ¹H-detected ¹³C, and ³¹P spectra obtained in an interleave manner from 2x2x2 cm³ voxel with TR of 5s and 32/64 transients with ¹³C decoupling. C-2 position on which ¹³C was enriched to 98% was exclusively observed in the ¹H-(¹³C) spectrum (Fig. 1b). Fig. 2 demonstrates the ¹H spectra with and without ¹³C inversion obtained with a natural abundance sample without ¹³C decoupling. In the difference spectrum (i.e. ¹H-ditected ¹³C spectrum) the side band signals derived from natural abundance acetate C-2 were clearly observed with the center peak (¹H connected to ¹²C) suppressed completely. The peak intensity of the side bands was 1.0% of the center peak obtained by adding (a) and (b), demonstrating a quantitative recovery of ¹³C signal in the TRINITY measurement.

Fig.1. TRINITY spectra with ^{13}C decoupling obtained in a phantom containing 50mM 2- ^{13}C acetate, 50mM glutamate, 100mM ATP, 100mM MgCl₂, and 5mM EDTA. (a) ^{1}H , (b) ^{13}C detected with ^{1}H , (c) ^{31}P . VOI=2x2x2cm³, NT=32 (^{1}H), 64 (^{31}P), TR=5s, TE/TM=7.7/35ms for STEAM.

Fig.2. TRINITY spectra without ¹³C decoupling obtained in a phantom containing natural abundance acetate, glutamate, and ATP. (a) ¹H, (b) ¹H with ¹³C inverted, (c) (a)-(b). VOI= $2x2x2cm^3$, NT=512 (¹H), TR=5s, TE/TM=7.7/35ms for STEAM.

The authors thank Dr. M.Garwood for his HS adiabatic pulses. **References**

[1] F.Mitsumori, N.Takaya, Proc.Int Soc.Magn.Reson.Med., 11, 1138 (2003).

[2] J. Pfeuffer, I. Tkac, I-Y. Choi, H. Merkle, K. Ugurbil, M. Garwood, R. Gruetter, Magn. Reson. Med., 41, 1077-1083 (1999).