Interleaved ¹H/³¹P STEAM Spectroscopy of Exercising Human Gastrocnemius Muscle at 3 Tesla

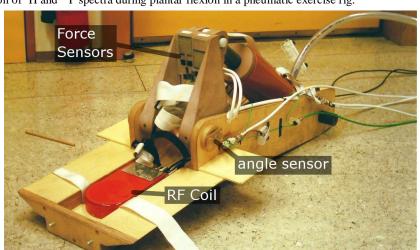
M. Meyerspeer^{1,2}, M. Krssak^{1,3}, G. J. Kemp⁴, E. Moser^{1,2}

¹MR Centre of Excellence, Vienna Medical University, Vienna, Austria, ²Medical Physics Dpt., Vienna University, Vienna, Austria, ³Internal Medicine III, Vienna Medical University, Vienna, Austria, ⁴Department of Musculoskeletal Science, University of Liverpool, Liverpool, United Kingdom

Purpose/Introduction Proton and phosphorus magnetic resonance spectra can provide complementary information on tissue metabolism. Acquiring two sets of spectra in consecutive experiments is time-consuming and furthermore may result in undesirably modified test conditions, e.g. due to fatigue during studies of exercising muscle. Whilst ³¹P MRS has long been used for investigation of exercising muscle, interest in ¹H spectroscopy of muscle tissue has increased over recent years [1]. In particular, the possibility to quantify changes in lactate concentration and compare them with changes in pH, PCr and P_i during exercise will remove a long-standing technical limitation to the study of the regulation of glycolysis, and also of cellular acid-base buffering mechanisms [2]. An interleaved STEAM sequence was developed to acquire localised ¹H and ³¹P spectra from two independently positioned voxels in a single experiment, which has the additional benefit of NOE enhancement of the ³¹P spectra. This work demonstrates the feasibility of interleaved acquisition of ¹H and ³¹P spectra during plantar flexion in a pneumatic exercise rig.

Methods Interleaved acquisition of ¹H- and ³¹P spectra with STEAM localisation was implemented on a 3T Bruker Medspec whole-body scanner via the MultiScanControl tool. The size, shape and position of the two voxels and other sequence parameters can be chosen independently. The integer number of excitations/acquisitions of ¹H spectra per ³¹P excitation can be chosen to optimise T_R for the respective metabolites. T_1 of ¹H metabolites is typically on the order of 1 s [3] while ³¹P metabolites have significantly longer T_1 s, ranging from 3 s to 6 s at 3 Tesla [4]. A reasonable acquisition ratio is therefore ¹H : ³¹P = 4 : 1, yielding T_Rs of e.g. 2s:8 s and a time resolution of 16s (for minimum phase cycling). CHESS was used for efficient water suppression.

A non-magnetic rig (Fig. 1) was constructed for plantar flexion exercise with defined force during dynamic NMR studies. Whilst pushing a pedal against a pneumatic piston (V=1.7 l) the calf of the extended leg lies on a double tuned transmit-receive surface coil (d=10cm) which is countersunk in a wooden frame. By varying the pneumatic pressure,


pedal force can be adjusted arbitrarily e.g. to match the subject's MVC – even remotely, during the NMR measurement, and can be modified dynamically. Exercise is monitored continuously by force and position sensors on the pedal. **Results** The good performance of the interleaved ${}^{1}H^{31}P$ STEAM was verified

EMCL PCr ¹H STEAM ³¹P STEAM (Lipids) using a two-compartment test object [4]. In Rest vivo¹H spectra of resting human calf muscle Rest IMCL n =32 (5 subjects) were equivalent with standard n =16 $T_{\rm B}=2s$ STEAM experiments and with the $T_{\rm R}=8s$ interleaved ¹H/³¹P STEAM sequence, while TMA Cr3 ³¹P SNR was increased due to NOE by a Lipids νNTP αNTP **BNTP** Pi Cr2 factor of 1.34 ± 0.06 . Repetition time was $T_{\rm R}=2$ s for ¹H spectra (left) and $T_{\rm R}=8$ s for ³¹P spectra (right). $T_{\rm E}$ =8ms, $T_{\rm M}$ =30ms, BW=2.5 kHz, 1024 data points. VOIs were 1.7 cm^3 (¹H) and 34 cm³ (³¹P). Exercise Exercise Spectral quality was sufficient for n = 4n =8 quantification of creatine (Cr), choline T_R=8s T_R=2s (TMA) and extra- and intramyocellular lipid (EMCL & IMCL) from ¹H spectra and P_i and PCr in ³¹P spectra, even during exercise. Significant PCr/Pi changes could be achieved using the pneumatic exercise rig 4.5 4 3.5 3 2.5 2 1.5 0.5 1 5 0 -5 -10 -15 -20 without deterioration of spectra e.g. by ppm maa

Discussion/Conclusion Interleaved acquisition of STEAM spectra of ¹H and ³¹P at 3 Tesla was demonstrated to be feasible during plantar flexion exercise. Interleaved acquisition ¹H spectra are equivalent to standard acquisition, and there is an *SNR* benefit in ³¹P spectra. Future developments will focus on implementation of multiple $T_{\rm E}$ s for protons during one ³¹P MRS acquisition, lactate editing and adiabatic water suppression. **References**

- [1] Boesch C, Kreis R [2001] NMR Biomed 14: 140–148.
- [2] Kemp G, Roussel M, Bendahan D, le Fur Y, Cozzone P [2001] J Physiol 535:901-28.
- [3] Krššák M, Mlynárik V, Meyerspeer M, Moser E, Roden M [2003] in Book of Abstracts vol. 16 #526 ESMRMB.
- [4] Meyerspeer M, Krššák M, Moser E [2003] Magn. Res. Med. 49: 620-625.

motion (Fig. 2).

