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Introduction 
 
Quantification of susceptibilities is an important subject in MRI. MR phase images can be used to retrieve susceptibilities of tissues. One application is to 
obtain the blood oxygenation level through the measurement of phases from images (e.g., [1]). Recently, reference [2] describes how one can quantify 
magnetic susceptibilities for arbitrarily shaped objects in any fields with minimal inhomogeneity. In this abstract, we will summarize our theory development 
as based on fundamental electromagnetism and reevaluate some of the results shown in [2]. 
 
Theory and Methods 
 
An external magnetic field induces field corrections due to the body and tissue susceptibilities depending on their geometries. Assuming that there is no eddy 
current induced in the subjects during imaging, the induced fields can be expressed by the spatial derivative of the solution of Laplace's equation [3]. Because 
the susceptibility of any tissue is much smaller than unity, only the first-order term in the expansion of the susceptibility makes a major contribution to the 

solution. As a result, the H-field component along the main field B0 is approximated by (1 - χ α( Tx )) B0/µ0 where χ is the susceptibility of the tissue, µ0 is the 

permeability, and α( Tx ) = 
1

4π " d 
T

 S ' • B̂0 (B̂0 • 
T

“ (1/|Tx − Tx ′|)). The integral is over the surface of the tissue. Inside the tissue, the magnetic field component 

along the main field is µ0 (1 + χ) H ≈ (1 + χ -χ α( Tx )) B0. Outside the tissue, assuming an empty space, the magnetic component along the main field is µ0 H ≈ 

(1 - χ α( Tx )) B0. The field difference picked up by MRI is ∆B = (1/3 - α( Tx )) χB0 or -χ α( Tx ) B0, depending on whether point Tx is inside or outside the tissue, 
respectively.  
 
When more tissues are present in one system, more complicated formulas can still be written down, based on these equations of field differences. For 

example, if a tissue with susceptibility χ1 is inside another tissue with susceptibility χ2, the field difference of a point Tx inside the former tissue is ∆B = (1/3 - 

α1( Tx )) χ1B0 – (α2(Tx ) −α1( Tx )) χ2 B0 where α1( Tx ) and α2( Tx ) are the integrals over the surface between the first tissue and the second tissue, as well as over 
the outer surface of the second tissue, respectively. The phase in MR images is the field difference multiplied by -γ (gyromagnetic ratio times 2π) and the echo 
time. 
 
Results and Discussions 
 

The formulas of α( Tx ) can be analytically derived when simple geometries are considered. As an example, for a sphere with radius a, α( Tx ) = 1/3 or a3 (1 - 3 

cos2θ)/(3r3), when Tx is inside or outside the sphere, respectively. θ and r are spherical coordinates. For an infinitely long cylinder with radius a and whose axis 

is at an angle θ0 with the main field, α( Tx ) = (sin2θ0)/2 or -a2 (sin2θ0 cos2ϕ)/(2 ρ2), when Tx is inside or outside the cylinder, respectively. ρ and ϕ are 
cylindrical coordinates. These are well-known results often used by MR researchers [1,2]. 

Reference [2] employs a spherical-mean-value theorem in order to carry out a derivation. This translates to an average of α( Tx ) over a spherical surface with 

radius |Tx | (call it 
_
α). Now it becomes clear and it can be easily shown that 

_
α = α(0) (the value of α at the sphere center) when the spherical surface is smaller 

than the object in which it has a uniform susceptibility. When the spherical surface is larger than the object with an arbitrarily shape, 
_
α = 0. It is obvious that 

this average can be applied to a sizable spherical shell or a sphere. The averaging results will still be the same. In fact, the MR experimental data shown in 
Fig. 4 of [2] support the theory and imply constant α values inside the pillboxes and different constant α values outside the pillboxes (but inside the test 
beaker). 
 
Based on the experimental results shown in Fig. 4 of [2], the theoretical prediction of the susceptibility difference between the solutions inside and outside a 
cylindrical pillbox should be 0.981 ppm instead of 0.921 ppm, when the cylindrical pillbox is parallel to the main field. The discrepancy is due to a certain 
confusion of how data are to be analyzed and how the susceptibilities are to be averaged in [2]. Our derivation here also leads to a result that the susceptibility 
of water (doped with a small amount of CuSO4) used in the beaker in [2] is about -8.22 ppm, in good agreement with the known susceptibility of water, -9.05 
ppm. 
 
In summary, the first-order estimate of susceptibilities of tissues only depends on geometries of tissues. This may become a powerful tool when susceptibility-
weighted imaging becomes more important [4]. 
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