Fast Correction of the Gradient Field Non-uniformity for Large FOV Continously Moving Table Techniques

M. Sabati^{1,2}, N. Nagarajappa^{1,2}, M. L. Lauzon^{2,3}, R. Frayne^{2,3}

¹Electrical and Computer Engineering, University of Calgary, Calgary, AB, Canada, ²Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Calgary, AB, Canada, ³Radiology, University of Calgary, Calgary, AB, Canada

Introduction

Effective methods for the correction of gradient magnetic field distortions using *a priori* error fields and field mapping have been previously presented. Large field-of-view (LFOV) imaging using a continuously moving table^{1,2} is a new imaging approach that acquires data in hybrid (x, k_y , k_z)-space; this makes it difficult to directly apply these traditional correction approaches in fast MR imaging applications, such as angiography. Some investigators have addressed this issue for constant table motion;^{3,4} although, their approaches demonstrated improvement, they were limited by slow table motion, small spatial extent in z,³ lengthy correction time³, large hybridspace overlap⁴, and faint banding artifacts⁴. Here, we propose a real-time hybrid-space data-combining strategy that minimizes gradient geometric distortion. Results in phantoms and humans show rapidly produced 3D LFOV images with high spatial accuracy (≤ 1.5 mm error). In addition, the proposed method allows correction of data acquired with variable as well as constant table motion, v(t).

Methods

Our approach to LFOV imaging allows interactive and variable table motion together with under-sampling the hybrid-space.^{2,5,6} Both the acquisition patterns and the table motion have required the development of data combining strategies for overlapping hybrid-space data. Rather than simply replacing existing data with newly acquired data, we have proposed averaging the overlapping data by weighting the data collected near the magnet iso-centre more heavily. As the table moves, the *k*-space encoding pattern rapidly refreshes the data near the centre of hybrid-space, thereby providing less gradient-distorted samples even with relatively fast table motion. Figure 1 shows two typical readouts acquired at time-points, t_1 , t_2 , (corresponding to table positions, x_1 , x_2) at a particular (k_y , k_z)-phase-encoding. The hybrid-space data is determined after applying weighting functions, $w_1(x)$ and $w_2(x)$ (with parameter *a* or *b*), to the overlapping portion (with a distance *L*) of the Fourier-transformed readouts, $S_1(x, k_y, k_z)$ and $S_2(x, k_y, k_z)$:

$$S_{corrected}(x,k_y,k_z) = w_1(x)S_1(x,k_y,k_z) + w_2(x)S_2(x,k_y,k_z)$$

$$w_2(x) = 1 - w_1(x)$$

$$w_1(x) = \begin{cases} 1, & 0 \le x < a \\ (x+a-L)/(2a-L), & a \le x < L-a & \text{or } \frac{1}{1 + \exp(-bx)} \\ 0, & L-a \le x \le L \end{cases}$$

Piecewise linear and sigmoidal weighting functions (shown in Figure 1 and described above) with stochastic and elliptic-centric acquisition patterns were used.^{2,5} Two data sets each from four volunteers and two large phantoms were collected on a 3 T MR scanner (Signa; GE Med Systems, Waukesha, WI) using the body coil. The first data set was used as a reference and was obtained with a non-moving table 3D acquisition and then geometrically corrected with the conventional method. The second acquisition set (256×128-256×16) was acquired with the interactive moving table technique at slow ($\sim 1 \text{ cm s}^{-1}$) and fast $(\sim 2 \text{ cm s}^{-1})$ table motion rates. We collected only a portion (15% to 40%) of the hybrid-space in 60 s to 90s scan times. Data combining was done in real-time right after Fourier transformation in the k_x -direction. The LFOV images were reconstructed offline by simple Fourier transformation in the (k_v, k_z) -direction.

Figure 1. Two typical readout echoes acquired at two time-points, t_1 , t_2 , at the same phase-encode while the table was being moved. The overlapped data are averaged with data near the magnet iso-centre (\times) being more heavily weighted.

Figure 2. (a) Uncorrected $FOV_x = 48$ cm slice (b) a portion of the geometrically corrected LFOV slice with linear data combination. Spatial error < 0.9 mm.

Results

Figure 2 presents the results using linear data combination (with a = L/3) for slow table motion and FOV_x = 48 cm. Figures 2a and 2b show an geometrically-distorted slice and the LFOV slice after using the proposed correction, respectively. The spatial distortion was greatly reduced throughout the LFOV volume. Similar results were obtained in all subjects with a maximum error of 1.1 mm for slow table motion and up to 1.5 mm for fast table motion.

Discussion

We have proposed and successfully evaluated a real-time data combining strategy for minimizing gradient geometric distortions. This approach allows fast correction of LFOV data acquired with interactive table motion by exploiting the inherent hybrid-space data overlap. Due to fast and repeated acquisition of data near the centre of the hybrid-space, our method produces LFOV images with little gradient non-linearity-induced spatial distortion. In general, the speed of the table affects the functionality of the correction algorithm on the quality of the image.

References

DG Kruger et al. Magn Reson Med 2002; 47: 224-231.
 M Sabati et al. Proc 10th ISMRM, 2002; 213.
 JA Polzin et al. Proc. 10th ISMRM; 2002, 380.

- 4. Y Zhu, CL Dumoulin, Magn Reson Med 2003; 49: 1106-1112.
- 5. M Sabati et al. Phys Med Biol 2003; 48: 2739-2752
- 6. M Sabati et al. Proc 11th ISMRM, 2003; 252.