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Introduction 
The quality of a magnetic resonance image is dependent upon the accuracy by which physical position is spatially encoded. As MRI data is now used routinely for 
stereotaxy, longitudinal studies of atrophy and functional studies, ensuring images have no distortion and inhomogeneity is critical. The principal machine dependant 
sources of this inhomogeneity are eddy currents, gradient non-linearity, B0- and B1 inhomogeneity [1]. Here, we present an analytical approach to calculating and 
removing the effects of non-linear gradients only. The primary reason for a gradient only solution is the recent interest in short-bore high-speed gradients. Although 
peripheral nerve stimulation is a limiting feature of short rise times, such gradients have found use in high-speed echo planar imaging (EPI) of the heart and diffusion 
tensor imaging of the brain. To achieve short rise times and avoid peripheral nerve stimulation, designers have restricted the length and limited the number of turns in 
gradients. These constraints, although suitable for the implementation of pulse sequences having the desired speed, have the undesired consequence of increased non-
linearity. 
 
Non-linear pulsed field gradients induce image distortions due to incorrect spatial encoding of the signal. If we assume field gradients are linear, it follows that k-space 
is sampled linearly and thus the FFT is suitable for reconstruction. However, any 
deviation from linearity in the gradients results in non-linear data sampling and 
subsequent errors in image spatial encoding. A non-linear Fourier transformation 
would allow this data to be correctly transformed to an image. Unfortunately, non-
linear Fourier transformation greatly increases computation time by N/log2N, 
relative to a FFT, making real-time image generation computationally prohibitive. 
Here, we present a general analytical solution to correct image distortions induced 
by gradient non-linearity. The method is applicable to any gradient configuration. It 
is robust and more importantly; is based upon an approach where the FFT is 
maintained for image reconstruction.                                                                                                                         Figure 1. Gradient distribution. 
Theory 
In standard MR imaging, k-space is sampled at a single time rate and under the assumption that linear gradient fields are applied. If the gradient field is non-linear, there 
will be a geometric distortion of these images. Knowing the exact gradient field profiles is the key to solving this problem. Accurately describing the gradient field 
distribution is not a simple task. The most general approach is to expand the field using spherical harmonics as the basis function [2]. The spherical harmonics 
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Z ( , , )z z x y zη′ ′ ′ ′= − , where ( , , )x y z  is original distorted imaging and ( , , )x y z′ ′ ′  is corrected imaging. 

Results  
The gradient set analyzed in this paper is the high-speed Sonata gradients manufactured by Siemens Aktiengesellschaft in Germany. The experimental gradient 
distributions for the X, Y, and Z gradients are shown in Figure 1.A phantom manufactured by Bruker Medical in Germany for assessing gradient linearity was employed 
to validate the image space correction method described above. This 
phantom consists of a cylinder having perfectly flat ends. The diameter of 
the phantom is 18.5cm and the depth 3cm. Within the phantom there are 
point markers the spacing between which is a known distance being 2cm 
for the main grid. If such a phantom is placed in the XY plane of the 
magnet the resultant image should appear as a perfect circle. As well, the 
point markers can be used to map the imaging volume of the gradients by 
moving the phantom fixed distances along the X, Y, and Z-axes. Figure 2(a) 
shows a 2D image of the phantom sliced in the XY plane with the centre of 
the phantom placed at the magnet isocentre. Note that the grid markers are 
visible when this phantom is imaged. A white circle has been superimposed 
on this image to demonstrate distortions. The image has been corrected 
using the harmonics to the 5th order. The resultant image is shown in figure 
4(b). The background of the image has also been corrected illustrating that 
the non-linear properties of the gradients increases for points further 
removed from the magnet isocentre. 

                                                                                                                                                             
Figure 2. (a) Original imaging,                                               (b) Corrected imaging.       

Conclusions  
Image distortions induced by gradient non-linearity are a serious problem for the generation of meaningful images using some high-speed gradient sets. Although it 
might be possible to correct such distortions using translation, warping, and twisting matrices any such attempt will always be empirical. In this presentation we have 
demonstrated that if the gradient field is quantified using an appropriate expansion then the exact characteristics of the gradient set can be used to correct an image.  
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