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Introduction 
Motion encoding has important applications in MRI. In flow quantification, coherent motion is encoded although incoherent motion (turbulence) can 
be present. The best-known application of incoherent motion encoding is (of course) diffusion MRI. 
The encoding of motion using magnetic field gradients can be analyzed using a linear systems approach (1,2). We shall combine this approach with 
the phase space (i.e. position-velocity space) concept (3). The formalism will be explained on the basis of two variants of the same basic sequence: 
the Fourier Flow Method (FFM in flow imaging) (4,5) and the Pulsed Gradient Spin Echo (PGSE in diffusion imaging) (6). The formalism allows us 
to interpret quantities such as diffusion time and measured displacement profiles when doing q-space imaging (6) with general gradient waveforms. 
Pulse sequences 
The PGSE-sequence has two positive gradient lobes, one on each side of the inversion pulse as shown in Fig.1. The dephasing of the spins can be 
obtained by introducing an effective gradient which is exactly the gradient waveform used in the FFM-sequence (usually in a gradient echo version). 
Linear systems approach 
The motion induced phase shift acquired by spins that move along a magnetic field gradient can be considered as a function of the time t  the 
gradient is switched off: 
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Here )'(tg  is the gradient waveform, T  its duration and )'(tz the time dependent position of the spins. Equation [1] shows that position encoding 

can be considered as a linear system (convolution relation) with impulse response )(0 th . This is valid when considering one gradient lobe. When 

considering the whole waveform (two lobes), because the zero-th gradient moment 00 =m , not position but velocity is encoded: 
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This can also be interpreted in terms of a transfer function )(1 ωH  by taking the Fourier transform: )()()( 1 ωωω VH=Φ . It is clear that the transfer 

function depends on the spectrum of the gradient. According to the linear systems approach, flow encoding should be interpreted as a weighted 
averaging process with weight function the impulse response.  When interpreting it as instantaneous encoding, the centroid of the impulse response is 
the best instant to choose (2). For diffusion imaging in terms of position encoding, this leads to position encoding at the centers of the two gradient 
lobes in Fig.1. As a result, this leads to a diffusion time ∆  (and not 3δ−∆ ) because [ ])()( 120 cc tztzm −= γϕ  with δgm =0  and 12 cc tt −=∆ . In 

terms of velocity encoding, the centroid is located halfway the two gradient lobes. The phase shift is then given by )(1 ctvmγϕ =  which is completely 

equivalent to the previous result because ∆= δgm1  and the velocity is best approximated by [ ] ∆−= )()()( 12 ccc tztztv . 

Imaging in phase space 
Flow imaging can be described in (6D) phase space by using a position-velocity dependent spin density ),( vrρ . The MR-signal becomes then: 

 ( )[ ]drdvvqrkivrqkS ∫∫ += ..exp),(),( ρ          [3] 

with k  the zero-th moment of the position encoding gradients and q  the first moment of the velocity encoding gradients.  

Turbulent flow can be decomposed into its (ensemble) averaged and random components: uUv += . We shall consider FFM with velocity encoding 
v along the vessel and position encoding x perpendicular to it. For a general gradient waveform, this leads in the Gaussian Phase Approximation 
(GPA) (7) to an image intensity )(),(),( 21 uIUxIvxI ⊗=  with: 
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In q-space imaging of diffusion, two spatial encodings are used and 0=U . This leads to a measured velocity distribution )(2 uI  for each pixel 

),( yx . The variance 2σ  depends on the normalized (w.r.t. 0=ω ) transfer function and the Fourier transform of the autocorrelation function 

(diffusion spectrum).  Equation [4] shows that 22 u<σ  due to the gradient spectrum. As a result, measured distributions underestimate the width of 

the real distribution when using finite gradients. This was for instance experimentally observed in ref. (8). The formalism can also be applied for 
other sequences (e.g. phase mapping with turbulent pulsatile flow). For restricted diffusion, higher order terms should be included in the  GPA.
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