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Introduction 
 The noise of the estimates for fat and water in 3-point Dixon imaging [1] depends on many factors including the echo times, the field inhomogeneity, the ratio of 
fat to water [2] and the reconstruction algorithm [3].  The Cramér-Rao bound (CRB) is the lower bound on the variance of any unbiased estimate of the fat and water.   
It provides a measure of the minimum uncertainty of the desired quantities for a given data acquisition, independent of the reconstruction algorithm.  The expression of 
the bound itself provides insight into how the different components of the imaging chain affect the noise performance.  The CRB can be used to choose echo times and 
reconstruction algorithms.  It arises naturally when considering MRI as a statistical estimation problem. 
Background 
The CRB is an inequality of the Fisher Information Matrix (FIM) which sets a 
lower bound on the covariance of any unbiased estimator.  When comparing 
matrices “≥” means that the difference of the two matrices is positive semi-
definite.  In particular it implies that the variance of the estimates (diagonal terms 
of the covariance matrix) cannot be smaller than that of the inverse of the FIM.  
To present the results in terms of the Number of Signal Averages (NSA), we 
normalize the variance of the estimate by the variance of the original 
measurements. To compute the CRB all we need is the probability model for 
generating the measurements (independent Gaussian).  There is no specification 
of the estimation algorithm.  One can view the FIM, and equivalently the CRB, 
as a sensitivity of the data to the parameters being estimated.  
Model and Expressions for CRB 
We assume the signal can be reconstructed 
on a pixel-by-pixel basis.   If we know the 
field map, the estimation of fat and water is 
a linear problem.  In that case, the CRB of 
all 4 unknowns (I and Q values for fat and 
water) is the same and has a closed form 
solution [3].  For an unknown field map, the 
estimation is nonlinear.  The variance of the 
fat and water depend on the fat and water 
densities themselves [2] and they become 
coupled to the estimate of the field map. 
Results and Discussion 

Given our model, the Maximum Likelihood Estimator 
(MLE) of the fat, water and field map is Nonlinear Least 
Squares (NLS).  We verify the expression for the CRB with 
Monte Carlo studies and experimental measurements.  Fig. 1 
shows the variance of all the unknowns as a function of the 
first echo time (TE1) for an acquisition of the following 
form: TE2= TE1+ 2π/3 and TE3 = TE2 + 2π/3 (where TEi is 
the echo time in units of phase rotation between fat and 
water) and for the case where only water is present.   If the 
field map was known, the NSA would equal 3 for all 
unknowns and be independent of TE1.  The deviation from 
this behavior comes from the nonlinearity of the estimation 
problem.  The optimal TE1 results in a symmetric acquisition 
with TE2=0.  Note that the when the estimation is not linear, 
the variance of the real and imaginary components of the 
signal are not equal. In Fig. 2, we verify that the poor 
behavior seen in symmetric acquisitions when the fat and   
water signals are equal [2] is intrinsic in the measurements, not a consequence of the reconstruction algorithm.   

In Fig 3 we present the results from a symmetric acquisition (where the second echo is on resonance):  
TE1 = -∆TE, TE2 = 0, TE3 = ∆TE for a situation where there is only water in the pixel.  The difference 
between the two solid lines quantifies the information loss from not knowing the field map.  The NSA of the 
field map (not shown) increases with ∆TE which explains the decreased difference between the two curves 
decreases as ∆TE increases.  This plot can also be used to make trade-offs between artifacts and noise for 
sequences like SSFP that are susceptible to artifacts for large echo times.  The In-vivo measurements were 
obtained from a series of cardiac images of a normal volunteer by using a ROI in the cardiac wall in the 
reconstructed water image and using an ROI outside of the object for the source variance.  The curves in Fig. 3 
show the CRB for cases in which the field is known and unknown.  The experimental values are for the 
algorithm presented in [3] with the field map unknown.  The results are at first surprising in that the 
experimental values are better than the CRB for the case where the field map is known.  However, the algorithm 
used for Fig 3 incorporated field map smoothing in the iterations of the NLS algorithm [3].  For areas where the 
field is slowly varying, field map smoothing reduces the uncertainty introduced by needing to estimate the field 
map to the point where it matches the case where the field map is known.  For this model, in terms of NSA, 
there may be other algorithms that match the performance of the algorithm in [3] but none can do better. 
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Figure 1,2: Solid lines (CRB), Symbols (Monte Carlo); Figure 3: Symbols (Experimental) 
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