Iron oxide enhanced MRI for monitoring of anti-angiogenic tumor treatment

T. Persigehl¹, L. Matuszewski¹, A. Wall¹, R. Bieker², N. Meier¹, T. Kessler², W. Berdel², R. Mesters², W. Heindel¹, C. Bremer¹

¹Department of Clinical Radiology, University of Muenster, Muenster, Germany, ²Department of Medicine/Hematology and Oncology, University of Muenster, Muenster, Germany

PURPOSE:

The aim of this study was the evaluation of iron oxide enhanced MRI for non-invasive, early detection of the efficacy of anti-angiogenic tumor treatment.

MATERIALS AND METHODS:

Human fibrosarcoma bearing nude mice (HT 1080, tumor size 5- 15 mm) were i.v. injected with a vascular targeting agent (VTA) inducing selective thrombosis in tumor neovasculature (treatment group, n = 11) or saline (controls, n = 13) respectively. MRI was performed before and after i.v. injection of an ultrasmall superparamagnetic iron oxide (USPIO, SHU 555 C, Schering® AG Berlin) 4-8 hours after initiation of treatment. Iron oxide induced changes in R2* (Δ R2*) were measured using a T2 weighted dual Echo-EPI sequence. The vascular volume fraction (VVF) was determined by calibration of Δ R2* values of tumor tissue with Δ R2* of muscle. Parametric Δ R2*-maps were calculated for visualization of tumor perfusion patterns. MRI results were correlated with the immunhistochemistry of tumor sections.

RESULTS:

After injection of the VTA a significant reduction of the VVF (2.25 ± 1.08 % versus 0.48 \pm 0.3 %; p < 0.01) and an approximate 80% decrease of $\Delta R2^*$ in treated animals compared to controls was measured (Fig. 1). $\Delta R2^*$ -maps revealed a clear reduction of tumor perfusion after anti-angiogenic tumor therapy (Fig. 2a,b). The immunhistochemistry with extensive tumor thrombosis after treatment confirmed the MRI results (Fig. 2 c,d).

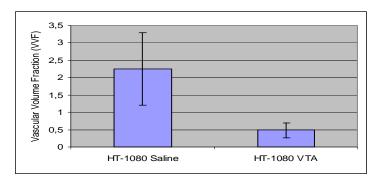


Figure 1: Vascular Volume Fraction (VVF) in fibrosarcoma (HT-1080) bearing mice after i.v. injection of saline (control) and a vascular targeting agent (VTA).

CONCLUSION:

Iron oxide enhanced MRI is a useful method for early non-invasive monitoring of tumor response of anti-angiogenic treatment. With the availability of bolus-injectable, long circulating iron oxides, which are currently in phase III clinical trials, this technique can readily be adapted for patient use.

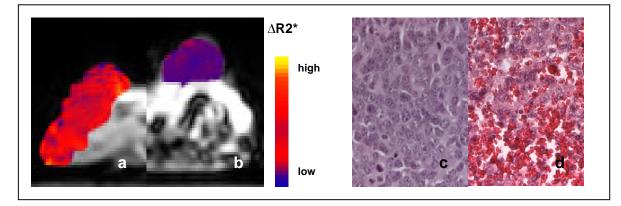


Figure 2: Human fibrosarcoma (HT-1080) bearing mice after i.v. injection of saline (a,c) and a vascular targeting agent (b,d) with a clear reduction of tumor perfusion in MRI parametric $\Delta R2^*$ -maps (a,b) and an extensive tumor thrombosis at the immunhistochemistry (c,d) after anti-angiogenic tumor therapy.