# Evaluation and accuracy of arterial wall shear stress measurement using a rapid 3D phase contrast acquisition technique

R. K. Dalal<sup>1</sup>, K. Brosche<sup>1</sup>, J. D. Carew<sup>2</sup>, T. Gu<sup>3</sup>, S. Fain<sup>1,3</sup>

<sup>1</sup>Biomedical Engineering, University of Wisconsin Madison, Madison, WI, United States, <sup>2</sup>Biostatistics and Medical Informatics, University of Wisconsin Madison, Madison, WI, United States, <sup>3</sup>Medical Physics, University of Wisconsin Madison, Madison, WI, United States

# INTRODUCTION

Wall shear stress (WSS) is the viscous drag of flowing blood on the vessel wall [1]. Low and oscillatory WSS has been associated with plaque formation [2]. Therefore a non-invasive method of measuring WSS in-vivo in a reasonable scan time would be useful. We have applied Phase contrast-Vastly undersampled isotropic projection (PC-VIPR), a rapid 3D projection based method [3] for assessment of WSS. PC-VIPR is capable of acquiring large 3D volume data with isotropic spatial resolution in a single acquisition and allows measurement across the vessel in any direction. The objective of this study is to demonstrate the feasibility of measuring WSS using 3D PC-VIPR. Phantom and in-vivo experiments were performed to compare 3D PC-VIPR WSS results with 2D PC WSS.

# MATERIALS AND METHODS

Experiments were performed on a 1.5T MR scanner (Signa LX; GE Medical Systems, Milwaukee, WI) using 2D PC and 3D PC-VIPR sequences. For the phantom study, a 1 M long tube with an internal diameter of 8.0 mm was surrounded by 2% agar gel. Tubing was connected to a Cole-Parmer pump supplying copper sulphate doped water with a T1 of approximately 400 msec, from a reservoir housed outside the scan room. Typical parameters used for 2D PC were TR/TE/Flip = 29 ms/8.5 ms/15°, FOV = 80 x 80 mm, matrix 512 x 512 and NEX= 10. The parameters used for PC-VIPR were TR/TE/Flip = 14.3 ms/4.2 ms/10°, FOV = 180x180x180 mm, matrix 512x 512x 512, and scan time = 14 minutes. The effects of spatial resolution and undersampling for PC-VIPR were studied for WSS estimates in the tube phantom where the analytical result is known. Thus far a single healthy human volunteer study was performed using retrospectively gated 3D PC-VIPR compared to Cartesian cine 2D PC placed perpendicular to the internal carotid artery. The parameters used for cine 2D PC were FOV= 24x24 cm, matrix 256x256, and scan time = 2 minutes. The parameters used for PC-VIPR were FOV= 24x24x24 cm, matrix 256x256x256 and scan time = 8 minute with 1300 projections per cardiac phase. The flow [4] in the carotid arteries was expected to be approximately laminar therefore a parabolic fitting method described by Oyre et al was used to estimate WSS.

## **RESULTS AND DISCUSSION**

The phantom experiment allowed analytical calculation of WSS and also demonstrated that 3D PC-VIPR WSS measurements matched with 2D PC. The velocity profiles match perfectly for 3D PC-VIPR and 2D PC (Figure 1). However, for practical applications shorter scan times and larger voxel sizes must be used. The phantom experiments suggest that a resolution of 0.7mm is adequate to measure WSS within 5% for a T1 of ~ 0.4 s (Figure 2). Another factor likely to affect the accuracy of WSS estimates is the degree of azimuthal undersampling. As few as 2,500 projections (~6minutes for 10 cardiac phases) are enough to reduce errors in WSS estimates below 5%. Although preliminary, the WSS measurements from the in-vivo study show that 3D PC-VIPR performs comparable to 2D PC (Figure 3). The parameters used for WSS *in-vivo* are in the range where error is 10-20%. Increasing the scan time on the order of 14 minutes will reduce the errors in situations where needed.

### CONCLUSIONS AND FUTURE WORK

We have demonstrated the feasibility of measuring WSS in phantom studies and invivo using 3D PC-VIPR. 3D PC-VIPR is a promising technique for measuring WSS and flow in the carotid arteries due to its capability of 3D volume acquisition in a single exam, isotropic spatial resolution, reduced scan time and the ability to measure across vessels in any orientation. The parametric method of Oyre [5] works well for circular vessels having a laminar flow profile. We are currently developing a nonparametric model for WSS measurements in arteries with complex geometry. Further in-vivo studies investigating WSS measurements in the carotid bifurcation are in progress.

### REFERENCES

1. JN Oshinski et al, JMRI 5:640-47 (1995)

2. PT Schumacher et al, Crit Care Med 30 (2002) 3. AV Barger et al., MRM 48:297-305(2002) 4. WW Nichols et al., 3rd edition 36-38 (1990)

5. S Oyre et al., MRM 40: 645-55(1998)



Figure 1 - 3D PC-VIPR velocity profiles matches the 2D PC profile. The WSS values for both were 0.12 N/m<sup>2</sup>. Laminar flow is present in circular vessels, which allows an analytical measurement of WSS. The solid blue line indicates the parabolic fit curve.



Figure 2 - The percent error in WSS due to azimuthal undersampling and spatial resolution in PC-VIPR. The errors are measured with respect to the analytical value (WSS =  $0.13 \text{ N/m}^2$ ).



Figure 3 - WSS in the right internal carotid artery of a healthy volunteer for 3D PC-VIPR gated and 2D PC gated shows comparable results.