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INTRODUCTION
Arterial wall shear stress (WSS) is proportional to the derivative of blood velocity evaluated at the arterial wall. One method for noninvasively estimating WSS is
through post-processing of phase contrast magnetic resonance images (PC-MRI). PC-MRI is capable of measuring blood velocity along the direction of arterial blood
flow [1]. Parametric methods for estimating WSS from PC-MRI depend on assumptions such as approximately circular vessel symmetry or laminar flow [2]. This
abstract proposes a nonparametric method for estimating WSS from PC-MR images for more general application os WSS estimation to more complex vessel geometries
and flow regimes.
MATERIALS AND METHODS
Method: The WSS estimation method consists of: (1) determination of the vessel wall position, (2) fitting of a nonparametric function to the blood velocity
measurements within the vessel, (3) approximation of the derivative of the blood velocity function at the boundary. Specifically, in step 1, the vessel interior wall pixels
are automatically extracted from a magnitude image with an edge detection algorithm [3]. A closed, periodic smoothing spline curve is then fit to the boundary pixelsto
estimate the vessel wall at sub-pixel resolution and to compute the normal directions. Pixels from the PC-MR image that are within the boundary are segmented for
fitting. In step 2, interior points are denoted as (X, Vi, z) for i=1,...,n, where x and y indicate pixel location and z indicates the corresponding velocity. Blood velocity is
modeled as z = f (x, i) + & , where & ~iq N(0, 6), where we assume only that f is a smooth function. An estimator for f is found in a reproducing kernel Hilbert space
denoted Hr with reproducing kernel R such that
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The unique solution follows from a more general result in [4] and involves alinear combination of the reproducing kernel evaluated at a point t and the data, namely
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The function R provides a model for spatial covariance and matrix X can be regarded as a spatial covariance matrix. In fact, the R, which is a symmetric positive definite
function, defines a unique Hr. Here, Ris selected from the Matern family of radial basis functions [5]. Let 7 = [|(zi,¥:) — (z;,9;)l| be the Euclidean distance between
two points. Then B.(7) = exp(-7)m,(7), »=0,1,2,... jsthe Matern reproducing kernel for order v, where , isa polynomial of a particular form [5]. The regularization
parameter A and order v can be objectively determined with generalized cross-validation [6]. In step 3, the estimated velocity function is used to evaluate the derivative
at the boundary along the normal directions, which yields the wall shear rate (WSR). WSS is the product of the blood viscosity and WSR.

Experiment: A glass tube phanton was constructed with an indentation to provide a nonconvex cross-section. The phantom experiment was performed on 1.5 T
Signa LX (GE Medica systems, Milwaukee, WI) scanner using a 2D phase contrast (PC) sequence. The glass tube was connected to a Cole-Parmer pump placed
outside the scanner. The flow rate was set to 6.25ml/s. The parameters used for the scan were FOV=80 mm x 80 mm, matrix size= 512 x 512, NEX= 10, TR/Hip =
29ms/15° and slice thickness= 0.7mm.

RESULTS

The proposed method was successfully applied to the phantom data even in the concave region of the phantom where parametric methods that depend on convexity or
symmetry assumptions would typically fail. The boundary pixels determined by the Canny method are marked on the magnitude image in (). The estimated velocity
function along with contours is in (B). A regularization parameter of A=1250 and Matern order v = 4 were used to estimate the velocity function. Notice that the
contours are more closely spaced near the indentation than in other regions of the tube. This indicates a greater rate of velocity change and, hence, greater wall shear
stress. The estimated derivatives are plotted versus angle in (C). The angle is with respect to the center of the tube and increases counter clock-wise. There is a
systematic trend in the estimates that reflects the shape of the tube. Note the large WSS between angles 4 and 5 radians. This is the region of the tube where the
indentation is greatest.
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DISCUSSION
The main result of this abstract is to describe a nonparametric method and establish its feasibility for estimating WSS in blood vessels. Nonparametric function

estimation in Hr does not require restrictive assumptions about the form of the blood velocity profile or symmetry of the vessel. In the phantom data, this method
produced a good fit and sensible estimates of WSR along the entire vessel wall. While the Canny method was able to automatically identify boundary pixels from the
phantom data, determining vessel boundaries in vivo might be more difficult. Others have shown the advantages of double inversion black blood MRI for identifying
vessel boundaries [7]. One limitation of this study is the lack of a “gold standard” to confirm the WSR estimates. Measuring WSR with additional methods would
provide confirmational evidence. While not considered in this abstract, the bootstrap is a procedure that can be used to estimate confidence intervals or standard errors
for the WSS estimates. This method can also be extended to fit 3D images or a series of contiguous 2D images acquired along the flow direction. Additional phantom
studies and in vivo studies are necessary to provide better understand the strengths and limitations of this nonparametric method and how they compare to other
methods. The preliminary results from this study suggest the promise of the nonparametric method as a potential diagnostic tool.

REFERENCES

[1] Pelc NJ, Bernstein MA, Shimakawa A, Glover G. (1991). J Mag Reson Imag 1:405-423.

[2] Oyre S, Ringgaard S, Kozerke S, et al. (1998). Magn Reson Med 40:645-655.

[3] Canny J. (1986). |EEE J Pattern Analysis Machine Intelligence 8(6): 679-698.

[4] Kimeldorf G, Wahba G. (1971). J Math Anal Appl 33:82-95.

[5] Stein ML. (1999). Inter polation of Spatial Data: Some Theory for Kriging. Springer-Verlag, New Y ork.

[6] Wahba G. (1990). Spline Models for Observational Data. SIAM, Philadelphia.

[7] Steinman DA, Thomas JB, Ladak HM, et al. (2002). Magn Reson Med 47:149-159.

Proc. Intl. Soc. Mag. Reson. Med. 11 (2004) 1924



	Return to Main Menu
	=================
	2004 Program
	=================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD



