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INTRODUCTION 
Arterial wall shear stress (WSS) is proportional to the derivative of blood velocity evaluated at the arterial wall. One method for noninvasively estimating WSS is 
through post-processing of phase contrast magnetic resonance images (PC-MRI). PC-MRI is capable of measuring blood velocity along the direction of arterial blood 
flow [1]. Parametric methods for estimating WSS from PC-MRI depend on assumptions such as approximately circular vessel symmetry or laminar flow [2]. This 
abstract proposes a nonparametric method for estimating WSS from PC-MR images for more general application os WSS estimation to more complex vessel geometries 
and flow regimes.   
MATERIALS AND METHODS 
Method: The WSS estimation method consists of: (1) determination of the vessel wall position, (2) fitting of a nonparametric function to the blood velocity 
measurements within the vessel, (3) approximation of the derivative of the blood velocity function at the boundary. Specifically, in step 1, the vessel interior wall pixels 
are automatically extracted from a magnitude image with an edge detection algorithm [3]. A closed, periodic smoothing spline curve is then fit to the boundary pixels to 
estimate the vessel wall at sub-pixel resolution and to compute the normal directions. Pixels from the PC-MR image that are within the boundary are segmented for 
fitting. In step 2, interior points are denoted as (xi, yi, zi) for i=1,…,n, where x and y indicate pixel location and z indicates the corresponding velocity. Blood velocity is 
modeled as zi = f (xi, yi) + εi , where εi ~iid N(0, σ 2), where we assume only that f is a smooth function. An estimator for f is found in a reproducing kernel Hilbert space 
denoted  with reproducing kernel R such that     

. 
The unique solution follows from a more general result in [4] and involves a linear combination of the reproducing kernel evaluated at a point t and the data, namely  

 
The function R provides a model for spatial covariance and matrix Σ can be regarded as a spatial covariance matrix. In fact, the R, which is a symmetric positive definite 
function, defines a unique . Here, R is selected from the Matern family of radial basis functions [5]. Let  be the Euclidean distance between 
two points. Then  is the Matern reproducing kernel for order ν, where πν is a polynomial of a particular form [5]. The regularization 
parameter λ and order ν can be objectively determined with generalized cross-validation [6]. In step 3, the estimated velocity function is used to evaluate the derivative 
at the boundary along the normal directions, which yields the wall shear rate (WSR). WSS is the product of the blood viscosity and WSR.  
Experiment: A glass tube phanton was constructed with an indentation to provide a nonconvex cross-section. The phantom experiment was performed on 1.5 T 
Signa LX (GE Medical systems, Milwaukee, WI) scanner using a 2D phase contrast (PC) sequence. The glass tube was connected to a Cole-Parmer pump placed 
outside the scanner. The flow rate was set to 6.25ml/s. The parameters used for the scan were FOV=80 mm x 80 mm, matrix size= 512 x 512, NEX= 10, TR/Flip = 
29ms/15˚ and slice thickness= 0.7mm.    
RESULTS 
The proposed method was successfully applied to the phantom data even in the concave region of the phantom where parametric methods that depend on convexity or 
symmetry assumptions would typically fail. The boundary pixels determined by the Canny method are marked on the magnitude image in (A). The estimated velocity 
function along with contours is in (B). A regularization parameter of λ=1250 and Matern order ν = 4 were used to estimate the velocity function. Notice that the 
contours are more closely spaced near the indentation than in other regions of the tube. This indicates a greater rate of velocity change and, hence, greater wall shear 
stress. The estimated derivatives are plotted versus angle in (C). The angle is with respect to the center of the tube and increases counter clock-wise. There is a 
systematic trend in the estimates that reflects the shape of the tube. Note the large WSS between angles 4 and 5 radians. This is the region of the tube where the 
indentation is greatest.      

                                      
DISCUSSION 
The main result of this abstract is to describe a nonparametric method and establish its feasibility for estimating WSS in blood vessels. Nonparametric function 
estimation in  does not require restrictive assumptions about the form of the blood velocity profile or symmetry of the vessel. In the phantom data, this method 
produced a good fit and sensible estimates of WSR along the entire vessel wall. While the Canny method was able to automatically identify boundary pixels from the 
phantom data, determining vessel boundaries in vivo might be more difficult. Others have shown the advantages of double inversion black blood MRI for identifying 
vessel boundaries [7]. One limitation of this study is the lack of a “gold standard” to confirm the WSR estimates. Measuring WSR with additional methods would 
provide confirmational evidence. While not considered in this abstract, the bootstrap is a procedure that can be used to estimate confidence intervals or standard errors 
for the WSS estimates. This method can also be extended to fit 3D images or a series of contiguous 2D images acquired along the flow direction. Additional phantom 
studies and in vivo studies are necessary to provide better understand the strengths and limitations of this nonparametric method and how they compare to other 
methods. The preliminary results from this study suggest the promise of the nonparametric method as a potential diagnostic tool.    
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