Stimulation of Rb⁺ Uptake by Dobutamine in Pig Hearts in vivo Assessed by ⁸⁷Rb-MRS

V. V. Kupriyanov¹, B. Xiang¹, J. Sun¹

¹Institute for Biodiagnostics, NRC, Winnipeg, MB, Canada

Introduction

We have previously shown using ⁸⁷Rb MRI that the adrenergic agonist, dobutamine (Dob) greatly stimulated Rb⁺ uptake (~2.5 fold) in isolated crystalloid-perfused pig hearts under constant flow conditions [1]. In addition, our experiments *in vivo* showed that pig hearts can be safely loaded with Rb⁺ over 60-min period, however the Rb⁺ uptake kinetics was relatively slow [2]. In the present work we studied whether Dob can increase Rb⁺ uptake rate *in vivo* to shorten the loading period without significant side effects.

Methods

Pig model. Domestic pigs $(33.6\pm2.9 \text{ kg}, n = 8)$ were anesthetized with 1.5-2.0% isoflurane in oxygen via inhalation mask. Following median sternotomy the heart was exposed and a surface coil placed against the anterior left ventricular wall. The right femoral vein and artery were cannulated for *iv* RbCl infusion and taking arterial blood samples and monitoring blood pressure, respectively. Baseline hemodynamic parameters were: heart rate (HR), 106±9 bpm, systolic pressure (SP), 78±7 mmHg, diastolic pressure, 40±3 mmHg. Baseline blood parameters were: pO₂, 334±57 mmHg, pH, 7.43±0.03, glucose, 5.5±1.1 mM, lactate 1.1±0.3 mM, hematocrit, 27±5%, hemoglobin, 8.4±1.0 g/dL.

Experimental protocol. RbCl (188 mM) was infused at a rate of 4 mL/min $(1.35\pm0.14 \text{ mmol/h/kg})$ simultaneously with Dob (0.6 mg/h/kg) over 60-min period. ⁸⁷Rb MR spectra acquisition started simultaneously with RbCl infusion and lasted 120 min. Blood samples were taken periodically over the 120-min period. Thereafter the heart was arrested by an intra-ventricular injection of KCl, and excised. Samples of heart, skeletal muscle, liver, kidney and lungs were taken to determine Rb⁺ content.

 ${}^{87}Rb$ MRS. The spectra were acquired every 5 min on a Bruker Avance spectrometer interfaced to a Magnex 7T, 40-cm horizontal bore magnet using a 80 µs pulse applied every 10 ms with NA = 10,000 and sweep width of 20 KHz. Following exponential multiplication (LB = 150 Hz) FIDs were Fourier transformed and peak heights and areas were calculated. Rb contents in tissue and blood plasma samples were determined by ${}^{87}Rb$ MRS using a Bruker AM-360 spectrometer with a vertical bore magnet.

Results

Dob increased the rate of rise in Rb^+ signal intensity (Fig) due to increase in the rate constant (kx10³, min⁻¹) and stimulation of Rb^+ uptake, despite lower plasma levels and molar fractions ([Rb]/([Rb]+[K]), Table) of [Rb⁺] between 10 and 30 min of loading. HR and SP increased to 161±15 bpm (+52%) and 93±11 mmHg (+19%) by Dob, while the rest of the parameters remained unchanged.

Oloup			1 di dificici		
	$kx10^3$	Flux, %/min	Plasma [Rb ⁺], mM	<u>Plasma Rb⁺, mol. fr</u> .,%	Flux/mol. fr., min ⁻¹
1. Dob	36±11.7	4.8	0.51±0.19	9.3±2.8	0.51
2. Control [2]	13±2.4	2.5	0.73±0.24	13.3	0.19
Tamain sting of	information and	. (O min maniad and	used Dh ⁺ interactor to C	7 + 5 and $(5 + 70) = (5 - 2 + 0) = 0$	-1.10 + 1.6 means $-1/1-2$

Termination of infusion over 60-min period reduced Rb^+ intensity to 67 ± 5 and $65\pm7\%$ (5.2 ±0.9 and 4.8 ± 1.6 mmol/kg) of the maximum (~7.6 mmol/kg) in the control and Dob groups, respectively. At the end of the experiment cardiac/plasma Rb ratio was 39 ± 7.8 and 38 ± 9.2 in the control and Dob groups, respectively, assuming intracellular water content of 0.5 L/kg.

Discussion

The increase in the Rb⁺ uptake rate by Dob (2-2.5-fold) in cardiac muscle can be explained by adrenergic stimulation of the Na⁺/K⁺ ATPase. Indeed, we observed previously in isolated pig hearts 2.5-fold increase in the Rb⁺ uptake rate induced by Dob [1] in the absence of changes in HR and blood flow. However under *in vivo* conditions Dob increased HR by 52%, which could contribute to the increased Rb⁺ uptake due to more frequent opening of K⁺ channels and acceleration of K⁺ turnover. In addition, elevation of blood pressure by 19% (+ vasodilatation) doubled coronary blood flow [3], which might contribute to stimulation of Rb⁺ uptake due to increased Rb⁺ supply rate. However dependence on flow is not linear, since 65% increase in flow was associated with 20-30% increase in Rb⁺ uptake rate [4]. Thus Dob activates Rb⁺ uptake via adrenergic stimulation of K⁺ turnover and increased coronary flow. References

- 1. Kupriyanov et al., MRM, 2002;48:15-20.
- 2. Kupriyanov et al., Proc Intl Soc Mag Res Med, 2003;11:1708.
- 3. Kupriyanov et al., manuscript in preparation.
- 4. Kupriyanov et al., MRM, 2003;49:99-107.

