A self-assembling heteropolymetallic chelate, potential contrast agent for MR angiography

K. Kimpe¹, S. Laurent², T. Vogt¹, C. Burtea², K. Binnemans¹, R. N. Muller²

¹Department of chemistry, Katholieke Universiteit Leuven, Leuven, Belgium, ²Organic Chemistry/ NMR Lab, University of Mons-Hainaut, Mons, Hainaut, Belgium

Introduction

Desreux et al have proposed a new approach towards enhancement of relaxivity based on the formation of a supramolecular entity by self-assembly of gadolinium(III) complexes around iron(II) ions.^[1] In the present study, a Gd-DTPA moiety has been linked to an iron(II) binding 1,10-phenanthroline unit, resulting in a heteropolymetallic species with increased relaxivity. The imaging potential of this system was evaluated in vivo on Wistar rats by MR angiography (MRA).

Material and methods

Coronal and sagittal images of the abdominal blood vessels of Wistar rats were obtained at 4.7 T on a Bruker AVANCE-200 imaging system (3D TOF, TR/TE = 13.58/5.2 ms, flip angle = 20° , RF spoiling, matrix = $256 \times 128 \times 64$, FOV = $8 \times 5.7 \times 3$ cm, 64 contiguous slices). The contrast agent was administered as a bolus via the femoral vein at a dose of 0.04 mmol / kg.; Magnevist[®], used as a control, was administered at a dose of 0.1 mmol/kg. Images, acquired sequentially up to 90 min post-contrast, were reconstructed by Maximum Intensity Projection (MIP), and analyzed with Osiris software. The SI of blood vessels was measured and the evolution of post-contrast vs. pre-contrast SI as a function of time was calculated (Δ SI%).

Results and discussion

Synthesis and characterization

Gd-DTPA-5-amido-1,10-phenanthroline The was synthesized by reaction of 5-amino-1,10-phenan throline with DTPA-tetraester^[2], hydrolysis of the esters and finally complexation with GdCl₃. Upon addition of FeCl₂ to an aqueous solution of the Gd complex, the colour of the mixture immediately changed to deep red indicating the formation of a supramolecular structure [(Gd-DTPA-phen)₃Fe] (figure 1). Typically, one Fe^{2+} ions complexed with three gadolinium chelates.

The relaxation rate of a 0.2 mM solution of [Gd-(DTPA-phen)₃Fe] complex is 6.1 s⁻¹ at 20 MHz and Figure 1: Structure of the heteropolymetallic iron-

that of the Gd-DTPA (3.9 s^{-1} for 1 mM solution).

In vivo evaluation

The images show an enhancement of the arterial system, where SI reaches a maximum (45%) 7 min post-contrast and remains around 25% till the end of the imaging period (90 min); the SI enhancement produced by Magnevist[®] was less than 5% during the same imaging period (figure 2).

310 K, indicating a significantly higher relaxivity than gadolinium complex [(Gd-DTPA-phen)₃Fe].

Figure 2: Relative evolution of post-contrast SI as a function of time

Conclusions

We have shown that, by coupling a 1,10 phenantroline unit to Gd-DTPA moieties, the formation of a highly paramagnetic supramolecular structure is possible and is indeed easily obtained mixing an aqueous solutions of the gadolinium complex and of Fe^{2+} ions. The molecular relaxivity of the [(Gd-DTPA-phen)₃Fe] complex is much higher than the one of Gd-DTPA and its blood half-life is longer than the one of this reference compound. The [(Gd-DTPA-phen)₃Fe] therefore appears as an interesting potential contrast agent for MRA.

References

[1] J. F. Desreux, et al, US Patent 6,056,939 (2000); [2] P.L. Anelli et al, Bioconjugate Chem., 10, 137 (1999)