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The signal to noise ratio (SNR) per voxel in MR imaging is (1)  SNR = √(Ei/kT), where Ei is the signal energy in the 
ith voxel and kT  (for ideal reception) is the noise energy per point.  Noise power is fixed for a given receive bandwidth, so 
relative SNR depends upon delivery of signal energy, dE/dt. This is given in the theory of (so called) radiation damping,  in 
the classic (but problematic) paper of Bloembergen-Pound (2), who parameterize in terms of the coil Q and filling factor η – 
of which the latter is not readily measured in a practical NMR experiment.  The Bloembergen-Pound definition of  η    
(transformed to SI) units is the ratio of integrals: ∫B1

.MdV/M0
.∫B1dV, rather than the conventional ratio of sample volume to 

coil volume (3).  Alternatively, the reciprocity formula of Hoult-Richards (4) employs instead of these a figure of merit we 
call the transducer efficiency – B1(1)/√R, with B1(1) the RF magnetic field at unit current, and R the probe resistance – or its 
equivalent and easily measureable form B1(P)/√P where P is power absorbed by the probe.  The transducer efficiency varies 
as RF homogeneity, and is therefore a local figure of merit.  Also, since (as is common in reciprocity arguments) the current 
is divided out (5) so there is no explicit oscillatory time dependence.  We give below formulae for radiation damping in 
terms of the efficiency, and briefly consider inconsistencies in the original theory. 

The Zeeman energy Ez following a pulse with tip angle θ is -M0VB0cosθ ; its time derivative is the power delivered 
to the receiver, which is just the power available from the sample, assuming all receiver components are impedance 
matched: 
 
 
 
 
where V is the emf of the precessing nuclei (4), R is the coil resistance, and we  assume for simplicity a uniform B1, so that 
the transverse magnetization is just M0sin θ.  Alternatively,  from the Bloch equations for the damping field due to receiver 
current  in the coil:  
 
 
 
where γ is the gyromagnetic ratio, and the result is essentially that of Eq. [1]. The factor of 4 in the denominator derives 
from the oscillator current of V/2R, and the assumption of a linear coil in the quasi-static regime, where rotating field 
strength is one half the linear.  Also recall that B1(1) has units of tesla/amp.  These equations are straightforwardly adaptable 
for inhomogeneous RF, by introducing a spatial integral (3) of the field over the sample volume.  The predicted radiation 
damping constant is:  
 
 
 
for which we obtain a value τd of 2.4 sec, for a litre of water in a shielded bird cage or TEM head resonator at 3.0 T (i.e. 
B1(1) = 4 µT and R ~ 20 ohms.) Our formula differs in appearance from the Bloembergen-Pound result   1/τd = 2πγηQM0, 
for which they obtain the rather unrealistic value of τd = 0.03, for water protons at a field of 0.7 T, with Q of 100 and η = 1.  
Gueron (6) has re-written their formula in SI units as 1/τd = µ



γηQM0/2π, and notes that the quantity ηQ characterizes the 
sensitivity of the probe; it is roughly analogous to the efficiency (vide supra).  However, using the definition of inductance L 
= (1/µ



)∫ B1(1).B1(1)dV, with Q = ωL/R, shows that this corresponds only approximately to the reciprocity result, since the 
integrals for L are over all space, and those in reciprocity formulae only over the sample.  The filling factor is supposed to 
compensate for this; but it is not all apparent that it does.  It is our belief that the radiation damping constant  should be 
habitually written in a form which derives directly from reciprocity , possibly that of Eq. [3], provided its validity can be 
generally established. 
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