## Computational comparison of two RF coil configurations for SENSE imaging

## A. O. Rodriguez<sup>1</sup>

## <sup>1</sup>UAM Iztapalapa, Mexico, DF-09340, Mexico

Synopsis. The ultimate factor g was used to theoretically compare performance of two coil geometries for SENSE imaging. The circular SNR formula based on the quasi-static model was used, and the PERES coil SNR was calculated following the same approach. These expressions together with the ultimate factor g formula were used to compute ultimate-factor-g-vs-distance plots for comparison purposes. The PERES coil factor g can be up to 27% below that of a single circular-shaped coil. This improvement makes PERES coil a good choice for SENSE imaging. The present method strengthens the g simulation approach to evaluate coil performance for SENSE applications.

**Introduction.** The SENSE technique exploits the spatial information generated by receiver coil array coils for signal localisation in order to reduce gradient encoding. Image noise is enhanced locally as a result of reduced gradient encoding when the used coil array does not provide ideally distinct spatial sensitivities. This effect usually becomes relevant for reductions larger than a factor of two. It can be quantitatively described by the so-called geometry factor g. In addition to conventional array development considerations the geometry factor g must to be taken into account. Although g is difficult to estimate intuitively, it has been found that relatively basic simulations can give a good forecast of the performance of a certain array configuration. In this research, the *ultimate factor g* proposed by [1] is used to compare the coil performance of a circular-shaped coil and the PERES coil [2] for SENSE imaging.

Method. Reykowski [1] has recently calculated an analytical expression for the ultimate factor g for 2 ideal coils:

$$g^{shinato} = \frac{SNR^{fall}}{SNR^{SENSE}} = \left(1 - \left|\frac{S_{12}^2}{S_{11}^2}\right|\right)^{-\frac{1}{2}}$$

where  $S_{11}$  and  $S_{12}$  are the SNR of coils 1 and 2 at point 1 respectively. Eq. [1] shows that the ultimate factor g depends on the coil SNR. To compare the coil performance of these two coil design, the quasi-static model described in [3] was used to calculate a mathematical formula for the SNR of PERES coil (Eq. [2]), and the single-loop coil SNR (Eq. [3]) was also obtained from [3]:

$$SNR_{PERES} = \frac{MV\cos(\omega)}{\sqrt{(kT\Delta f\sigma)}} \sqrt{\frac{3N}{16l(b_{PERES}^2 + d^2)^3}} \quad [2], \quad SNR_{cir} = \frac{MV\sqrt{b}_{cir}}{\sqrt{(b_{cir}^2 + d^2)^3}} \sqrt{\frac{3}{16kT\sigma\Delta f}} \quad [3]$$

where *M* is the magnetisation density, *V* is the voxel volume,  $b_{cir}$  is the circular coil radius, *d* is the depth at a given point *p*,  $\Delta f$  is the bandwidth of the receiver low-pass filter, *k* is the Boltzmann constant,  $\sigma$  is the conductivity of half-space, and *T* is the temperature of the loss resistance. In Eq. [2],  $\omega$  is the angle representing the centre of the coil of radius  $a_{petal}$  (petal coil radius) relative to the coil of radius  $b_{PERES}$  (total radius),  $l a_{petal} = b_{PERES}$  (total radius), and N = number of petal coils. MatLab (V. 6.1, The MathWorks, Natick, MA) programmes were specially written to calculate the ultimate factor g profiles for these two RF surface coils. To assess the performance of these coils, ultimate g expressions were calculated for both coil configurations by substituting Eqs. [2] and [3] in Eq. [1] with  $\omega = 0$  for the case of two points as shown in Fig. 1.

**Results and Discussion.** The g profiles of the two coils were computed with reduction factor R = 1,  $b_{PERES} = b_{cb} = 10$  cm, and the following parameters, d (coil 1): 0 < d < 10 and  $d_{pha} - d$  (coil 2):  $0 < d_{pha} - d < 10$ . g-vs-d plots were then obtained and shown in Fig. 2(left). To evaluate coil performance an improvement plot was also estimated and shown in Fig. 2(right). It can be appreciated from Fig. 2 (left) that the factor g of the PERES coil shows a considerable improvement over the single-coil profile. Results of Fig. 2 (right) indicate that there is no evident change for the factor g for points near the surface coil (Coil 1 or Coil 2) according to the layout of Fig. 1, and that the upper limit of PERES coil factor g is about 27% below the factor g of the circular coil for distant points. An important limitation is that a coil SNR expression is required. To find an analytical expression for the SNR is a difficult task since coil designs can take very complicated configurations. These results are in good agreement with those reported in [4]. The PERES design shows better performance than the circular coil for SENSE imaging applications. Unlike the computationally-demanding and time-consuming simulations, the ultimate factor g expression offers a straightforward way to predict coil performance for SENSE techniques.

