Comparison of gadobenate dimeglumine (Gd-BOPTA) with gadopentetate dimeglumine (Gd-DTPA) for enhanced MR imaging of brain and spine tumors in pediatric subjects

C. Colosimo¹, P. Damaerel², M. Bourne³, M. Van Buchem⁴, G. Pirovano⁵, M. Kirchin⁶

¹Dep of Radiology, University of Chieti, Chieti, Italy, ²Dept. of Radiology, University Hospital Leuven, Leuven, Belgium, ³Dep of Radiology, University Hospital of Wales, Cardiff, United Kingdom, ⁴Dep of Radiology, University Hospital Leiden, Leiden, Netherlands, ⁵WWMA, Bracco Diagnostics Inc., Princeton, NJ, United States, ⁶World Wide Medical Affairs, Bracco Imaging Spa, Milan, Italy

Synopsis: Sixty-three pediatric subjects with confirmed brain or spine tumors underwent MR imaging before (T1w- and T2wSE sequences) and after (T1wSE sequences only) injection of either Gd-BOPTA (n=29) or Gd-DTPA (n=34) at a dose of 0.1 mmol/kg BW. Blinded qualitative evaluation revealed significant superiority for Gd-BOPTA for contrast enhancement (p=0.06) and lesion border delineation (p=0.018). Quantitative comparison revealed superiority for Gd-BOPTA over Gd-DTPA for lesion-to-brain contrast, contrast-to-noise ratio and percent enhancement. The superior contrast enhancement may be clinically advantageous in pediatric subjects for the detection and diagnosis of small or poorly enhancing CNS tumors. **Background**: Gadobenate dimeglumine (Gd-BOPTA, MultiHance[®], Bracco Imaging SpA, Milan, Italy) is a paramagnetic contrast agent whose T1 relaxivity *in vivo* (r1=9.7 mmol·L⁻¹s⁻¹) is approximately twice that of Gd-DTPA and other available gadolinium agents due to a capacity for weak and transient interaction with serum albumin (1,2). In adult subjects Gd-BOPTA (4) and Gd-DTPA-BMA (5). A prospective inter-individual study in 174 pediatric subjects with known or suspected CNS abnormalities recently demonstrated comparable safety and efficacy for Gd-BOPTA and Gd-DTPA (6). The present study qualitatively and quantitatively compares the enhancement achieved after Gd-BOPTA and Gd-DTPA in a sub-population of 63 pediatric subjects with confirmed brain or spine tumors.

Methods and Materials: Sixty-three pediatric patients with confirmed tumors of the brain or spine received an 0.1 mmol/kg BW dose of either Gd-BOPTA (n=29; 18 M/11F, mean age 7.5 ± 4.8 years) or Gd-DTPA (n=34; 13 M/21F, mean age 7.9 ± 4.7 years). MR images were acquired before (T1w- and T2wSE sequences) and within 10 min (T1wSE sequences only) of contrast injection. Blinded unpaired (pre- and post-dose images evaluated together) qualitative assessments of technically adequate images in which lesions were found both pre- and post-contrast (Gd-BOPTA: n=24; Gd-DTPA: n=31), were performed to compare pre- to post-dose changes in border delineation, visualization of internal morphology, and contrast enhancement by means of 4-point scales from 1 (poor) to 4 (excellent). Qualitative evaluations were performed by patient and by lesion (25 and 39 lesions for Gd-BOPTA and Gd-DTPA, respectively). Quantitative evaluation of intra-axial brain tumors (22 lesions for Gd-BOPTA, 25 lesions for Gd-DTPA) compared changes in lesion-to-background ratio (L/B), contrast-to-noise ratio (C/N) and % enhancement (%En). Statistical comparison between groups was performed using t-tests at p<0.05.

Results: The results of the unpaired qualitative assessment by patient are shown in Table 1. The pre- to post-dose changes were significantly superior for Gd-BOPTA compared to Gd-DTPA for border delineation (p=0.018) and contrast enhancement (p=0.006). Within-patient paired assessments similarly revealed significant superiority with Gd-BOPTA for contrast enhancement (p=0.04).

Table 1	Gd-BOPTA (n=24)			Gd-DTPA (n=31)			Difference
	Pre-dose	Post-dose	Change (post – pre)	Pre-dose	Post-dose	Change	Gd-BOPTA
						(post – pre)	– Gd-DTPA
Delineation of lesion borders	2.5 ± 0.7	3.3 ± 0.6 (p<0.001)	0.8 ± 0.8	2.7 ± 0.5	3.1 ± 0.7 (p=0.006)	0.4 ± 0.7	0.48; p=0.018
Visualization of internal morphology	2.5 ± 0.7	$3.4 \pm 0.6 \ (p < 0.001)$	0.8 ± 0.9	2.9 ± 0.3	3.4 ± 0.6 (p<0.001)	0.5 ± 0.6	0.31; p=0.126
Contrast enhancement of lesions	2.5 ± 0.6	$3.4 \pm 0.6 \ (p < 0.001)$	0.9 ± 0.9	2.9 ± 0.3	3.1 ± 0.7 (p<0.059)	0.3 ± 0.7	0.62; p=0.006

Qualitative lesion-by-lesion changes during unpaired assessment revealed significant superiority for Gd-BOPTA for border delineation (p=0.01) and contrast enhancement (p=0.001), and marked superiority for visualization of internal morphology (p=0.059). Similar evaluations during paired assessment revealed superiority for Gd-BOPTA for all parameters with significant superiority indicated for contrast enhancement (p=0.001).

Mean post-dose values for L/B, CNR (Fig. 1) and %En were all superior for Gd-BOPTA (0.5 ± 0.4 vs. 0.3 ± 0.4 ; 9.1 ± 15.4 vs. 2.2 ± 9.9 ; 66.6 ± 47.4 vs. 42.8 ± 39.0 , respectively) although wide differences between patients precluded overall demonstrations of significance.

Conclusion: As in adult patients, Gd-BOPTA demonstrates significant superiority over Gd-DTPA for enhancement of brain and spine tumors in pediatric patients. The superior contrast enhancement can be attributed to the two-fold greater T1 relaxivity in blood of Gd-BOPTA and my be clinically advantageous for the detection and diagnosis of small or poorly enhancing tumors in subjects for whom other diagnostic imaging techniques may be less desirable.

- 1. Cavagna FM, et al. Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 1997; 32:780-796.
- de Haën C, et al. Gadobenate dimeglumine 0.5 M solution for injection (MultiHance): Pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 1999; 23 (suppl. 1):161-168
- 3. Knopp MV, et al. Primary and secondary brain tumors: a bicentric intra-individual crossover comparison of gadobenate dimeglumine with gadopentetate dimeglumine for lesion enhancement. Radiology *In press*.
- 4. Colosimo C, et al. Is increased relaxivity beneficial for contrast-enhanced MR imaging of brain tumors? Blinded intraindividual comparison of Gd-BOPTA and Gd-DOTA. Neuroradiology *In press*.
- Runge V, et al. Double-Blind, Efficacy Evaluation of Gadobenate Dimeglumine, a Gadolinium Chelate with Enhanced Relaxivity, in Malignant Lesions of the Brain. Invest Radiol 2002; 37: 269-280.
- La Noce A, et al. Safety and efficacy of gadobenate dimeglumine in MR imaging of pediatric CNS. Comparison with gadopentetate. Proc. Intl. Soc. Mag. Reson. Med. 2000; 8:2032 (abstract).