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Introduction: Quantification of cerebral blood flow (CBF) using dynamic-susceptibility contrast (DSC) MRI relies on the deconvolution of the arterial input function
(AIF) to calculate the impulse response function CBF-R(t), where R(t) is the tissue residue function [1]. The AlF represents the concentration of contrast entering the
tissue of interest at time t, and it is commonly estimated from the signal changes in a major artery (e.g. the middle cerebral artery). However, it has been shown that the
presence of bolus delay and dispersion between the artery and the tissue of interest can be a significant source of error in CBF quantification [2,3]. These effects could
be minimized if alocal AIF were used [4], athough the measurement of alocal AlF can be problematic due to, for example, partial volume effects. Independent
component analysis (ICA) can be used to identify temporally independent patterns, and it has been previously used in DSC-MRI to remove the signal resulting from
large vessels[5], and as a segmentation technique [6]. The present work describes the use of ICA asatool to definealocal AlF, with the aim of minimizing the effects
of bolus delay/dispersion, and obtain a more accurate quantification of CBF.

M ethods: The methodology to calculate the local AIF consists of the following steps: (i) the concentration time course C(t) is calculated in each pixel [1]. (ii) The
optimum number N of independent components is estimated according to the Bayesian Information Criterion [7]. (iii) C(t) is decomposed into the N sources (and noise
components, see Eq.(1a)). (iv) The data are denoised to create Cyisqe(t) by removing the noise components. (v) The arterial components are identified (in the present
implementation, these were identified interactively by the user, based on their spatial distribution and temporal characteristics), and combined to create Cqq(t) (see
Eq.(1b)). (vi) The C,(t) dataset is scaled to have the same area under the peak throughout the slice [8]. (vii) The pixels with an unrealistic shape on Cy(t) (i.e. not
resembling a peak) are removed. (viii) The AIF in these pixelsis calculated from the surrounding pixels according to their distance to the pixel of interest using a
gaussian-weighting factor. For the present study, a 10-pixel stdev for the gaussian was empirically chosen (based on the gap size typically found after removing the
pixelsin the previous step), and the gaussian-weighting was truncated to a box of 30x30 pixelsto avoid non-local contributions. (ix) The resulting dataset is smoothed
(with a3x3 uniform kernel) to improve the SNR; this smoothed dataset represents the local AlF.

N
C(x,t)= Zaj (%), (t) + noise= C; (X,t) + noise (1a)
=0
CiccX D)= zaj (x-S t)+ zak (¥)-S.(t)=C,,(xt)+ zak (¥)-S.(1) (1b) where X denotes the pixel position, and the N sources were
arterial rest rest divided into the arterial sources and the remaining sources.

The methodol ogy was tested on data from patients with various vascular abnormalities. Data were acquired on a 1.5T Siemens Symphony scanner using a GE-EPI
sequence (TE/TR=47/1250 ms) after the injection of abolus of 0.15 mmol/kg of Gd-DTPA using an MR-compatible power injector (Medrad). To assess the effect of
using alocal AlIF in quantification of DSC-MRI, the data were analyzed in two different ways. First, Cisse(t) Was deconvolved using the local AlF generated in step (ix)
above. Second, the same Cii¢(t) dataset was deconvolved using a global AlF. The global AlF was calculated from pixels manually selected (with an early, large signal
drop) inamajor artery on the contralateral side. Deconvol ution was performed using singular value decomposition (SVD) [9], but with areduced threshold (5% [10])
for the truncation of the SVD expansion, due to theimproved SNR after signal denoising using I CA (see step (iv) above). CBF maps were cal culated from the
maximum of the corresponding impulse response function [9], CBV maps were calculated from the area under Cyssie(t) (normalized to the area under the corresponding
AIF[1]), and MTT maps were cal culated using the central volume theorem[1].

Results: The calculated local AIF was found to be heterogeneous in the patients studied, with some areas displaying delayed, wider peaks. Thisisillustrated in the
figure, for the data from a patient with MRA turbulence in the right middle, posterior, and anterior cerebral arteries: (a) 7 images (during the passage of the bolus) of the
calculated local AlF data set. A clear heterogeneity can be seen, with a delayed, wider, smaller AIF to theright side, particularly in the right frontal cortex (see figure
(b) for the AIF in the two pixelsindicated by the asterisksin (a)). (c) CBF (left) and MTT (right) maps cal culated using the local (top) or the global (bottom) AlF.
Various differences can be seen in the maps depending on the AIF used (e.g. CBF underestimation and MTT overestimation when the global AlF was used, see arrows).

Discussion: A new methodology to calculate thelocal AIF using ICA was

described, and tested on data from patients with various cerebrovascular 025
abnormalities. The methodol ogy was compared to the conventional approach
of using a global AlF (measured ina major artery). The new methodol ogy o3

produced higher CBF and shorter MTT (compared to the global AIF case) in
areas with distorted AlFs, suggesting that the effect of delay/dispersionis
minimized. The minimization of these effects using the calculated local AIF 01
should lead to a more accurate quantification of perfusion, which can have
important implications for diagnosis and management of patients with 008
cerebral ischemia. A further advantage of the proposed methodology isthe
improved SNR due to the denoising capabilities of the ICA, which should

further contribute to improve the accuracy of DSC-MRI quantification. o
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